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Abstract

Massive Multiple-Input Multiple-Output (MIMO) is a key technology of the next-generation 
wireless communication, especially in regard to the 5G and the evolving 6G networks, 
because they reach high spectral efficiency, high reliability, and high data-throughput. But 
as MIMO is scaled into the hundreds of antenna case and into different scenarios where 
users may experience time-varying and fast-changing channels, channel distortion, high 
mobility and hardware generated impairments are threatening its performance, partic-
ularly in real-time ultra-reliable low-latency communication (URLLC) allowsance path-
way. Despite making it possible to use conventional forward error correction (FEC) codes 
(e.g. LDPC and Polar codes) on a wide variety of systems, traditional codes tend to be 
poorly adaptable to quickly evolving, non-linear channels and often have high decoding 
latencies. The contributions to this work are summarised as follows: we suggest a Neural 
Network-Based Adaptive Error Correction (NNAEC) specific to high-capacity massive MIMO. 
To the best knowledge of the authors, it is the first attempt to combine Convolutional 
Neural Networks (CNNs) to extract the spatial feature and model the temporal errors with 
Bidirectional Long short-Term Memory (BiLSTM) networks, and an adaptive feedback mech-
anism based on reinforcement learning that is capable of learning and dynamically adapting 
the decoding methodology on the basis of real-time channel statistics of the signal-to-noise 
ratio (SNR), bit error rate (BER), and error vector magnitude (EVM). The proposed system 
is trained with various channel profiles comprising Rician, Rayleigh, fading as well as hard-
ware impairments like IQ imbalance, nonlinearity of amplifiers. As quantitative analysis 
will show, at 10 dB SNR NNAEC yields 59 percent reduction in the BER and 50 percent-plus 
reduction in the decoding latency over traditional LDPC decoders. The architecture is also 
run on a Xilinx ZCU104 FPGA platform, and it is both confirmed that it is possible to run 
in real time (inference latency = 2.1 ms) and that resources consumption is low. The pre-
sented approach is highly robust and scalable and could be well used in the real-world 
settings including autonomous systems, UAV communications, smart industrial Internet of 
Things networks, where the low-latency and adaptive operation at the physical layer is the 
key aspect. The present work is the foundation of intelligent and learning-based decoders 
on the physical layer of the future wireless systems.
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proposed in this paper in massive MIMO systems. The 
NNAEC embeds Convolutional Neural Networks (CNNs) 
to read through a spatial domain and the Bidirectional 
Long Short-Term Memory (BiLSTM) networks to design 
time errors. It also uses a reinforcement learning agent 
adjusting the actions of the decoder dynamically and 
according to feedback in real time, such as in terms of 
channel quality, SNR and error rates. The comparative 
architecture of the proposed NNAEC framework and 
that of the traditional Forward Error Correction (FEC) 
schemes is shown in figure 1, where adaptive learning 
and spatiotemporal decoding layers were included.  
The architecture allows the system to be ever adapting 
and results in reliability and low decoding latency, in the 
range of sub-2.5 ms, and thereby is ideally suited to be 
used in the next generation wireless deployments.

Related Work

Some of the foundations of wireless communica-
tion systems have been error correction techniques. 
Conventional methods, e.g., Turbo codes, Low-Density 
Parity-Check (LDPC) codes, and Polar codes, feed on 
the fact that they are still by far the most popular solu-
tions because they come closest to the Shannon limit 
in the case of controlled conditions. They however have 
weaknesses in highly dynamic, non-linear and prone to 
interference channels causing a push to learning based 
solutions.

By Nachmani et al. [1], one of the first deep learn-
ing-based decoders, a feedforward neural network-en-
hanced the performance of belief propagation with LDPC 
and Polar codes. Samuel et al. [2] introduced DeepMIMO 
which is an end-to-end neural network to detector 

Introduction

The knife-edge application needs fueling an unprec-
edented exponential rise in the wireless connectivity 
needs, including applications in autonomous vehicles, 
real-time health monitoring, immersive augmented 
reality and smart industrial systems, which have made 
communication technologies toward ultra-reliable, 
low-latency and high-capacity systems. Massive Multiple-
Input Multiple-Output (MIMO) is one of the enabling 
technologies that has undergone this shift and utilises 
large-scale antenna arrays in order that multiple users 
may be served which subsequently increases the spec-
tral efficiency, system throughput and the spatial diver-
sity. With Massive MIMO scaling hundreds of antenna 
and in trend towards 6G networks, the physical layer is 
much more vulnerable to the challenges of reality like 
time-varying channel and impairments, antenna cor-
relation, hardware non-linearity, and Doppler and burst 
errors.

Problem Formulation

The objective is to design an adaptive, low-latency, 
and wide rang SNR, channel models, and modulation 
schemes error correction framework in the dynam-
ic-environment of wireless propagation that occurs with 
massive MIMO specifically in the environment of user 
mobility and imperfect hardware. The framework should 
be able to react to dynamic conditions on a real time 
basis and in addition, should be deployable on edge or 
hardware limited platforms- which traditional Forward 
Error Correction (FEC) techniques like LDPC, Turbo or 
Polar codes find it hard to satisfy. These techniques 
are quite powerful but generally designed to be static, 
have an iterative decoding algorithm, and a non-triv-
ial latency of 3-6 milliseconds in their present-day 5G 
base station implementations, which might not meet 
URLLC requirements down to the second in applica-
tions like autonomous vehicular control or UAV swarm 
coordination.

The recent development of machine learning in gen-
eral, and physical layer modeling using deep learning, 
in particular, provides a chance to address these short-
comings. The neural networks have been demonstrated 
to have capabilities to represent complex nonlinearities 
and time varying pattern, with better results in symbol 
detection and channel estimation. Nevertheless, current 
neural decoders are static or over-parameterized or ill 
prepared to be adaptable on a changing channel.

A new Neural Network-Based Adaptive Error Correction 
(NNAEC) framework to cope with these issues is 

Fig. 1: Comparative Architecture of Traditional FEC 
vs. Proposed NNAEC Framework



Murugan PS et al. 
Neural Network-Based Adaptive Error Correction for High-Capacity Massive MIMO Systems

320 National Journal of Antennas and Propagation, ISSN 2582-2659

System Architecture

To be able to reproduce the real-life high-throughput 
communication scenario as much as possible, we will go 
with the assumption that downlink massive MIMO system 
will possess N t = 128 transmit antennas and N r = 16 
antennas, which would fit a large-scale 5G/6G network 
of base stations. In order to offer either high spectral 
efficiency, or robustness to multipath fading, the sys-
tem employs Orthogonal Frequency Division Multiplexing 
(OFDM) technique and 64-QAM modulating technique. 
The communication channel model is a hybrid, or 
Rayleigh-Rician Rayleigh fading profile that is seen to 
describe the non-line-of-sight and the line-of-sight. In 
the simulation the realistic hardware impairments such 
as in-phase and quadrature (IQ) imbalance, phase noise, 
and amplifier nonlinearities are also employed to bring it 
nearer to reality of deployment in the real world. These 
difficulties effect symbol level faults which degrade bit 
error rate (BER) and wreck associated applications Figure 
2: Block diagram of a Neural Network-Based Adaptive 
Error Correction (NNAEC) receiver design, which is incor-
porated into massive MIMO-OFDM system. The operation 
of which is founded on latency. This model of channel 
barges in as the setting through which weight of the rec-
tification of mistakes is quantified and enhanced.

The Neural Network-based Adaptive Error Correction 
(NNAEC) method proposed is meant to work at the 
receiver portion of the system, directly after MIMO 
detection. It uses a multi-stage neural framework that 
consists of three main parts: feature extractor, a tempo-
ral modeler, and a decoder head. The implemented fea-
ture extractor is Convolutional Neural Networks (CNNs) 
that capture both spatial correlation and inter-sym-
bol dependencies at OFDM subcarriers. Subsequently, 
Bidirectional Long Short-Term Memory (BiLSTM) network 
is used to analyse sequential symbol data to detect 
burst errors and temporal changes caused by channel 
dynamics. Such combination enables the system to learn 
not only the aspects of space but also dynamic-relation-
ships of time. The last step involves fully connected lay-
ers to mapping the feature representations at the high 
level into soft bit estimates producing corrected values 
of symbols. It trains its model on a combination of loss 
that pairs binary cross-entropy with hamming distance 
as a way of augmenting penalty on misclassification with 
sensitivity to multiple-bit errors. Table 2. Configuration 
of the Simulation Massive MIMO-OFDM System with 
Hardware Impairments According to this architectural 
design, NNAEC decoder will learn not only the challeng-
ing characteristics of the channel but also respond to 
the actual temporal adjustments effectively resulting in 

symbols in MIMO conditions. Although these models had 
shown encouraging results in a static or slightly dynamic 
environment, such models were not adaptive to real-
time channels dynamics.

Ye et al. [3] proposed modeling the entire physical 
layer with autoencoders and tested performance with 
Rayleigh fading and achieved good results at the cost 
of limited scalability to higher antenna arrays or mod-
ulation schemes. OShea and Hoydis [4] discussed about 
autoencoders as channel models and [13] modulation 
adaptation, and confirmed feasibility of end-to-end 
learning over PHY layers.

Recent developments have used transformer architec-
tures to error correction and channel decoding. As an 
example, Jiang et al. [5] proposed a transformer based 
neural decoder that is superior to RNNs in burst error 
conditions, particularly [14] when the codeword depen-
dencies are long. In the same regard, Zhong et al. [6] 
developed a CNN-based network-transformer hybrid 
decoder which learns both spatial and sequential depen-
dencies in LDPC-coded information. Such [11] models 
have the benefits of the ability to represent long-range 
dependencies and letting the parallel processing with 
the tradeoff in [15] reduced computational complexity.

Simultaneously, graph neural networks (GNNs) have 
become [12] popular in the process of decoding struc-
tured codes. Working further on their previous manu-
script concerning the utilization of GNNs to decode LDPC 
codes, Nachmani et al. [7] relied on the structural rep-
resentation of the codewords as graphs. The approaches 
are highly accurate in decoding and noise patterns 
robustness, but their training overhead and latency value 
is an issue to ensure real-time performance.

Most neural decoders, though, are still simple: they are 
not dynamic, can not incorporate feedback, and do not 
vary with changing channel conditions. The suggested 
work stands out of the crowd introducing the adaptive 
CNN-BiLSTM neural decoder augmented with the rein-
forcement learning that could be adjusted in real-time 
depending on feedback like signal-to-noise ratio (SNR), 
bit error rate (BER), and error vector magnitude (EVM). 
Comparison between the latest approaches to learn-
ing-based error correction of MIMO and wireless commu-
nication systems, which focuses on the drawbacks of the 
currently used systems and the benefits of the proposed 
adaptive NNAEC framework, are presented in Table 1. 
This makes such a framework a scalable low-latency and 
intelligent error correction scheme to next-generation 
high capacity massive MIMO systems.
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Table 1: Comparative Analysis of Recent Learning-Based Error Correction 
Techniques for MIMO and Wireless Communication Systems.

Author/Year Technique Application Area Limitations

Nachmani et al., 2018 [1] Deep Neural Belief 
Propagation

LDPC/Polar Decoding Static structure, limited adaptability

Samuel et al., 2017 [2] DeepMIMO (end-to-end NN) Symbol detection in MIMO Non-adaptive under fading channels

Ye et al., 2018 [3] Channel Autoencoder Rayleigh fading channels Poor scaling to massive MIMO

Jiang et al., 2022 [5] Transformer Decoder Long codewords, burst errors High memory, long inference time

Zhong et al., 2023 [6] CNN + Transformer Hybrid LDPC decoding Computationally intensive

Nachmani et al., 2021 [7] GNN for LDPC decoding Structured code decoding Latency for large graphs

Proposed System CNN–BiLSTM + RL Adaptation Massive MIMO Error 
Correction

Real-time, adaptive, and robust 
decoding

Fig. 2: Block diagram of the Neural Network-
Based Adaptive Error Correction (NNAEC) receiver 
architecture integrated into a massive MIMO-OFDM 

system.

superior BER and shorter decoding latency compared to 
conventional decoders.

Methodology

System Overview

Neural Network-Based Adaptive Error Correction 
(NNAEC) proposed framework should be executed at 
the receiver side (directly after the detection of MIMO). 
It has a multi-stage neural architecture made of three 
main modules namely a feature extractor, a temporal 
modeler, and a decoder head. The Convolutional Neural 
Networks (CNNs) are applied as the feature extractor to 
extract spatial correlation and inter-symbol dependen-
cies among OFDM subcarriers. After that, Bidirectional 
Long Short-Term Memory (BiLSTM) networks consume 
sequential symbol data to detect burst errors as well 
as temporal changes because of the channel dynam-
ics. Such combination enables the system to learn not 
only the spatial features which are static but also learnt 
based on temporal relationships with one another. The 
last layer is made of fully connected layers to match fea-
tures high level representation to soft-bit estimates that 
returns the corrected symbols. The loss function used to 
train the model is a compound one that combines binary 
cross-entropy to aggregate the consequences of misclas-
sification along with hamming distance to super-sensi-
tive the model to several-bit errors. Table 2. This type 
of architectural design with simulation configuration of a 

Table 2: Simulation Configuration for Massive MIMO-
OFDM System with Hardware Impairments.

Parameter Value

Number of Transmit 
Antennas (Nt)

128

Number of Receive 
Antennas (Nr)

16

Modulation Scheme 64-QAM

Channel Model Rayleigh + Rician

OFDM Subcarriers [Specify count, e.g., 256]

Impairments IQ imbalance, Phase noise, PA 
nonlinearity

Neural Architecture CNN + BiLSTM + FC Layers

Loss Function Binary Cross-Entropy + Hamming 
Distance

massive MIMO-OFDM system with the hardware settings 
has ensured that the NNAEC decoder not only learns the 
complex channel behaviors but also adjusts in a fast 
track manner to the real time variations and therefore 
used in improving the BER performance than traditional 
decoders as well as reduced latency.

Dataset Generation

To adequately train and test the suggested Neural 
Network-Based Adaptive Error Correction (NNAEC) 
scheme, it was necessary to generate an extensive and 
large varying dataset that can reflect the large variation 
of impairments and dynamics seen in a real-life wireless 
communication pursuit. The generation of the dataset is 
made to approximate reality with a multi-user massive 
MIMO-OFDM system on high-order modulation and realis-
tic channel condition.

Raw bitstreams are generated and Low-Density Parity-
Check (LDPC) codes are used to encode the data as 
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leading to channel simulation and comparison of decod-
ers. This synthetic dataset is of potentially large size, 
and it includes millions of training examples, making the 
model robust, general, and able to adapt to the broad 
range of transmission environments.

Neural Network Architecture

Neural Network-Based Adaptive Error Correction 
(NNAEC) is the proposed model that is meant to help 
to easily recover transmitted bit streams when they are 
referred to as noisy and distorted symbols in a mas-
sive MIMO-OFDM system. The architecture itself is well 
engineered to take into advantage spatial and tempo-
ral dependencies in the received signals, making the 
decoding very robust when conditions of the channel 
and hardwares may change.

The model first consists of the Input layer; the noisy 
OFDM symbols are passed through the Input layer, and 
the real and imaginary parts of each complex-valued 
OFDM symbol are derived. These are then organized 

it would be going into a typical communication pipe-
line. These coded bitstreams are next interpreted into 
64-QAM modulation symbols and entered into a 1024-
point OFDM modulating procedure making the subse-
quent sequencing line that is broadcast on the MIMO 
channel. It is implemented on MATLAB performing the 
simulation process, maintaining software modeling and 
parameter control accuracy.

• Three different forms of channel models are inte-
grated to encompass as many forms of channel behav-
iors as possible:

• This includes - (a) Uncorrelated Rayleigh fading that 
models rich-scattering, non-line-of-sight (NLOS) chan-
nels with completely independent fading paths.

• Thanks to - (b) Spatially correlated Rician fading, 
which models systems with partial line-of-sight (LOS) 
backscattering and antenna correlation, most typical 
in urban deployments.

• (c) Hardware-impaired channel models that add some 
practical impairments like IQ imbalance, power amplifier 
nonlinearity and phase noise and behave very closely to 
non-ideal RF front-ends one finds in real systems.

The generated streams of symbol are passed to the sim-
ulated channel and AWGN is applied with a wide signal 
to noise ratio spectrum of 0dB to 20dB so that the model 
can learn to decode at both low and high SNR. Both con-
ventional FEC decoding and the new NNAEC decoder are 
implemented at the receiver and then the original bit-
stream is recovered to do the benchmarking and valida-
tion. Figure 4 presents the block diagram of the dataset 
generation pipeline utilized to train and test the NNAEC 
framework, and breaks down every step of the pipe-
line beginning with the raw bitstream generation and 

Fig. 3: System-level overview of a downlink multi-
user massive MIMO system integrating the Neural 

Network-Based Adaptive Error Correction (NNAEC) at 
user terminals.

Fig. 4: Block diagram of the dataset generation 
pipeline for training and evaluating the NNAEC 

framework.
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Such a hybrid architectural design allows the NNAEC 
model to realize end-to-end error correction using only 
raw symbol data without the need of any predefined 
channel state information (CSI) and/or decoding conven-
tions, which makes it an excellent fit in real-time and 
rapidly changing wireless communication conditions. 
Figure 5 End-to-end representation of proposed NNAEC 
model with spatial feature extraction by CNNs, tempo-
ral modelling by BiLSTM and fully connected decoder.

Adaptive Feedback Mechanism

The proposed Neural Network-Based Adaptive Error 
Correction (NNAEC) framework considers an adaptive 
feedback mechanism with reinforcement learning agent 
that uses Deep Q-Network (DQN). This would be necessary 
in guaranteeing the model is capable of dynamically react-
ing intelligently to changes in channel conditions, user 
mobility and noise in the environment without requiring 
manual tuning and re-training of the whole model.

• The main feature of such a system is the fact that 
the process of constant monitoring of Channel Quality 
Indicators (CQIs) is implemented, where significant 
indicators are:

• Mean Signal-to-Noise Ratio (SNR), which indicates the 
condition of the channel on a macroscopic scale;

into a structure that is two-channel input tensor of 
size, where is the batch size and is the number of 
OFDM subcarriers. This structure enables the network 
to process each of the symbols as two-dimensional fea-
tures, like pipelines of image processing in the com-
puter vision.

The architecture consists of a feature extractor which 
comprises of a set of Convolutional Neural Network 
(CNN) layers which come after the input layer. This set 
of layers is in charge of capturing the spatial relation-
ships and inter-symbol dependencies between the OFDM 
subcarriers. The convolutional filters adapt to local pat-
terns of distortion and interference, but such patterns 
of interference and distortion can be especially useful 
for modeling an effect like adjacent-channel leakage, 
or frequency selectivity, or even spatial correlation in 
fading.

The spatial feature maps then enter into a Bidirectional 
Long Short-Term Memory (BiLSTM) layer which is the 
temporal modeler. This layer plays a key role to detect 
and correct burst errors and temporal differences in the 
reliability of the symbols because of time-selective fad-
ing or Doppler effects. The LSTM has a bilateral direc-
tional mechanism that enables the model to factor in 
the past and the future context superiorly reconstruct-
ing corruption bit sequences.

The output of the BiLSTM is then flattened and pro-
cessed through one or more fully connected layers, 
which serve as the decoder head. These layers trans-
late the extracted spatiotemporal features into soft-bit 
predictions. The final layer uses a sigmoid activation 
function, which maps each output to a continuous value 
in the range, representing the confidence probability of 
each bit being a logical ‘1’.

The model is trained using a composite loss function 
that combines binary cross-entropy (BCE) and Hamming 
loss, providing a balanced trade-off between probabilis-
tic accuracy and bit-wise error sensitivity:

 ( ) ( )α β= + . BCE y,y . HammingLoss y,yˆ ˆ

In this case y ∈ {0,1}M and ŷ ∈ [0,1]M represents the 
ground-truth bit vector and the predicted soft bit out-
put, respectively, and and, are hyperparameters that 
weigh the contribution of each loss component. The val-
ues of α = 0.8 and β = 0.2 were chosen empirically in this 
work so that the parameters were able to converge and 
at the same time, the bit level error could be minimized 
with no qualitative noise.

Fig. 5: End-to-end architecture of the proposed 
NNAEC model showing spatial feature extraction via 
CNNs, temporal modeling via BiLSTM, and decoding 

through fully connected layers.
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Adaptive actions and corresponding channel condition 
triggers used in the DQN-based feedback system. And 
thus it is fit to use in 5G/6G base stations, UAV receivers 
and edge devices suited to volatile radio environments.

Hardware Simulation Setup

A complete hardware-in-the-loop simulation and proto-
typing platform was built to finally prove the efficacy 
and actual-time feasibility of the proposed thought-
to-be on-time Neural Network-Based Adaptive Error 
Correction (NNAEC) regime. That hybrid platform will 
allow testing the model performance in conditions close 
to reality and introduce the understanding of the com-
putational and memory input needs of the model for 
embedded or edge-based applications.

The framework is a co-simulation of the discrete-event 
network simulator NS-3 integrated with TensorFlow 2.12, 
which is the library at the forefront of machine learning 
development. In such an arrangement, NS-3 will under-
take simulation of physical and MAC layers of a downlink 
massive MIMO wireless communication system, of OFDM 
modulation, system with antenna arrays, packet sched-
uling, as well as on dynamic behavior of channels when 
moving. Real-time procession of the NNAEC model is real-
ized by TensorFlow, which receives demodulated symbol 
flows and implies the adaptive error correction. The two 
environments can communicate through a special TCP 
bridge so that they exchange encoded/decoded data in 
real time; this can be used to effortlessly simulate lifelike 
network conditions and machine learning-based decoding.

To test the hardware viability the trained NNAEC model 
was also implemented and tested on a Xilinx ZCU104 FPGA 
device under high-level synthesis (HLS) Vitis AI tools. The 
model was quantized as 8-bit fixed-point format and major 
elements, such as CNN feature extractor, LSTM unit and 
fully connected block were implemented onto hardware-en-
abling primitives. Some of the most important metrics that 
the hardware implementation considered included:

• Inference Latency: Latency of an inference (input 
symbol reception to soft bit output);

• Error Vector Magnitude (EVM), which means the modu-
lation accuracy component and non-linear impairment.

Trend Compliance of Bit Error Rate (BER) in the last 
transmissions.

All these indicators are sent into a state vector s_(t) and 
supplied to the DQN agent in time step t. This state is 
then analysed by the agent and the agent then makes 
selection of an action a_(t) based on a set of strategies 
that already exist to maximise upon the performance of 
the decoding. The following actions can be done:

• The weights of internal models are updated using 
lightweight online gradient steps;

• Re-setting the depth of the decoder (i.e., modifying 
the amount of LSTM units, or LSTM layers with units);

• Fullback logic (i.e. a conventional LDPC decoder) in 
instances of extreme degradation.

To minimize computing and power wastage, adaptive 
decisions only take place where there are threshold vio-
lations like SNR level falls to be less than 6 dB or EVM 
threshold exceeds an allowed distortion value. This 
mechanisms of triggering based on a mentioned threshold 
makes sure that the model stays efficient and uses adap-
tive measures only in case of performance degradation.

The agent learns to optimize a cumulative reward objec-
tive that denotes the accuracy of the process of decod-
ing and efficiency of latency:

 

 
= − +   

 
t t

t

1
r BER . 

Latency

λ Is an adjustable weight balancing performance in cor-
recting errors and responsiveness in real-time. During the 
time, the agent obtains the optimal policy minimizing the 
decoding error and the overhead of computation under 
diverse channel dynamics. This adaptation mechanism 
using reinforcement learning provides NNAEC system 
with a massive advantage over the fixed neural decoders 
in being able to offer self-optimizing behavior, Table 3 

Table 3: Adaptive actions and corresponding channel condition triggers used in the DQN-based feedback system.

Action Trigger Condition Effect

Online weight update BER increasing over time Adjusts decoder weights on-the-fly

Adjust LSTM depth/units SNR < 6 dB or EVM > threshold Improves temporal modeling

Fullback to LDPC decoder BER > 10−2 after N iterations Ensures reliability in extreme cases

No action (passive mode) Stable BER/SNR/EVM Saves computational energy
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performances since adaptive mechanism allowed NNAEC 
to alter the mode of decoding dynamically depending on 
the degraded channel in question. With these results, 
the framework has been confirmed to be applicable in 
terms of offering significant symbol-level recovery across 
a wide range of SNR and in real channel distortions.

NNAEC framework also showed considerable superior-
ity in terms of latency and computational efficiency. 
Table 4 provides the results with regard to average 
inference latencies as evaluated inferred by NNAEC with 
an average of 2.4 milliseconds, nearly 50 percent lower 
than LDPC decoder (4.8 ms) and the CNN-only method 
(3.7 ms). In addition, the NNAEC memory size was mini-
mised to 14 MB as compared to the CNN decoder which 
required 18 MB due to its effective hybrid structure and 
quantisation policy. The hardware prototype on a Xilinx 
ZCU104 FPGA also confirmed that it can be deployed 
at edges since LUT usage does not exceed 62 percent, 
which allows real-time inference in low-resource devices 
like base stations as well as UAV-mounted receivers 
or even smart industrial controllers. Figure 7 shows a 
comparison between the BER performance of NNAEC 
and state-of-the-art decoders at different SNR condi-
tions in the symbol resiliency perspective using NNAE 
and showing that NNAE is better than the state-of-the-
art decoders. The results indicate the capability of the 
decoder to satisfy URLLC (Ultra-Reliable Low-Latency 
Communication) demand, among the computational and 
the memory efficiency.

The other important feature of the NNAEC model is that 
it is capable of generalizing to many different circum-
stances of communication. This model was tried in the 
presence of both Rayleigh and Rician fading conditions 
and different Doppler shifts to simulate the scenarios 
of mobile users. It had consistent performance across 
multiple antenna arrangements such as 128x16 and 

• Throughput: Anticipated during the number of bits 
decoded at some point per second after pipelining 
execution;

• Resource Utilization: This includes Look-up Tables 
(LUTs) DSP slices, BRAM and power consumption.

As the experimental findings show, the NNAEC model has 
a mean inference latency of 2.1 milliseconds, 62 percent 
overall LUT consumption, and medium memory usage, 
thus, proving it as an optimal system that can be used in 
edge devices, FPGAs of base stations, and in edge-based 
receivers just in real-time UAVs. The integrated simula-
tion and prototyping pipeline makes sure that the model 
is not purely theoretical but at the same time is prac-
tically applicable to the limitation of the present wire-
less hardware systems. Figure 6 Hardware-in-the-loop 
look and prototype that takes a combination of NS-3 and 
TensorFlow to evaluate the NNAEC model in real-time 
where the FPGA mapping takes the Xilinx ZCU104.

Results and Discussion

To approve the functionality of the suggested 
Framework, Neural Network-Based Adaptive Error 
Correction (NNAEC) and compare its functioning with the 
current state-of-the-art decoding methods like LDPC, 
Polar code and static decoder based on CNN, a total 
simulation framework was given. Figure 2 represents 
the outcome of the Bit Error Rate (BER) performance 
shifting the position under varied Signal-to-Noise Ratio 
(SNR), i.e., 6 dB, 10 dB and 16 dB. NNAEC decoder had 
BER of 1.3 x 10 -3 at 10 dB SNR, which is 59 percent and 
53 percent lower than that of the BER achieved in LDPC 
and Polar decoders, respectively. The run-length-limited 
decoder was a little better as compared to the conven-
tional FEC but none was as good as the NNAEC as it was 
not dynamic. Nonlinear and fading-heavy channels were 
the catalysts that recorded the greatest improvement in 

Fig. 6: Hardware-in-the-loop simulation and prototyping environment integrating NS-3 and TensorFlow for real-
time evaluation of the NNAEC model, with FPGA deployment on Xilinx ZCU104.
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64x64 massive MIMO arrangements, and was capable of 
scalability with the size of the system. In addition to 
that, the decoder accommodated varying non-ideal-
ities including IQ imbalance, phase noise, and ampli-
fier non-linearity, without retraining of the model. 
Such strength would make it very suitable in future 6G 
wireless, in which the surroundings are expected to be 
more flexible, diverse, and vulnerable to unexpected 
distortions.

In spite of its advantages, there were certain limitations 
noted. NNAEC model requires large and diverse data to 
achieve high accuracy of generalization during the train-
ing phase, which is expensive off-line preparation. Also, 
although the reinforcement learning agent will bring the 
adaptability that is needed in inference, there will be 
slight overhead in terms of replacing policies or fine-tun-
ing decoder parameters in a rapidly varying channel. 
One way such trade-offs can be alleviated in future 
efforts is by adding transfer learning, online pruning or 
meta-learning algorithms which can then allow further 
size reduction and faster adaptation. On the whole, 
NNAEC architecture can provide a highly balanced solu-
tion that introduces learning-based intelligence and 
low latency execution coupled with flexibility of adap-
tation, a solid choice as a viable recommendation to 

next-generation massive MIMO deployment in 6G wire-
less media.

Hardware Feasibility and Complexity Analysis

A full hardware feasibility study was done with FPGA 
based testbed to evaluate practical deployability of the 
proposed frame work Neural Network-Based Adaptive 
Error Correction (NNAEC). The last trained model was 
deployed to the Xilinx ZCU104 development platform 
that has been widely used with a Zynq Ultra Scale+ 
Multiprocessor System on Chip and is characterized by 
an efficient programmable logic and ARM-powered pro-
cessing system. This hardware prototype permits pre-
cise measurement of the systems computation speed, 
memory foot-print, and timing characteristics on the 
realistic constraint of a 5G deployment as well as pro-
jected future 6G deployments.

The shift in NNAEC model took the form of 32-bit float-
ing-point quantization to 8-bit fixed-point representa-
tion to maximize the deployment of the model on FPGA. 
BiLSTM blocks, convolutional layers, and fully connected 
layers, which are mkCNT components, were high-level 
synthesized into Xilinx Vitis AI using high-level synthe-
sis (HLS) flow. Loop unrolling and pipelining optimiza-
tions were used in a selective way to limit the latency 
without devouring throughput. With an average of 2.1 
milliseconds of inference latency, the FPGA implemen-
tation cut this time by a wide margin as compared to 
a typical software-based FEC decoder. This proves the 
ability of the system to support URLLC (Ultra-Reliable 
Low-Latency Communication) requirements in the real-
time scenario.

The analysis of resources used by the deployed model 
indicated that the corresponding model consumed 
around 62 percent of physically available Look-Up Tables 

Table 4: Latency and Memory Comparison 
of NNAEC vs. Baseline Decoders.

Decoder Inference Latency 
(ms)

Memory Footprint 
(MB)

NNAEC 2.4 14

LDPC 4.8 16

CNN 3.7 18

Fig. 7: BER Performance Comparison of NNAEC 
vs. State-of-the-Art Decoders under Varying SNR 

Conditions

Table 5: Resource utilization and performance metrics 
of the NNAEC model on Xilinx ZCU104 FPGA platform.

Metric Value

Inference Latency 2.1 ms

LUT Utilization 62%

DSP Slice Utilization 41%

BRAM Usage 58%

Power Consumption < 3.5 W

Quantization Format 8-bit Fixed Point

Optimization Techniques HLS, Pipelining, Loop Unrolling

Target Hardware Xilinx ZCU104 (Zynq 
UltraScale+)
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(LUTs) and 41 percent of DSP slices so that there would 
be ample space to combine it with other PHY-layer mod-
ules on the same chip. The BRAM consumed on silicon 
was not more than 58%, and so there exists a possibility 
to add more models to it or make it decoding friendly 
with more than one user. Power profiling showed that 
the implementation used less than 3.5 W under full load, 
which meshes fairly with the thermal requirements of 
edge-based wireless equipment like UAV-integrated 
MIMO, internet of things gateways and small-cell base 
stations.

Such, the results indicate that the proposed NNAEC archi-
tecture is not merely accurate and adaptive, but also 
hardware-efficient and scalable, thus, perfectly suitable 
to be deployed in real-world wireless systems where the 
key requirements are the real-time performance, power 
consumption, and a small footprint. The inherent neural 
plasticity and the optimization at the FPGA level makes 
this work an exciting point to start smart PHY-layer inte-
gration in the next-generation wireless networks. Table 
5 Resource consumption and performance of the NNAEC 
model at the Xilinx ZCU104 FPGA platform.

Conclusion

This paper demonstrated an emerging scheme of 
the Neural Network-Based Adaptive Error Correction 
(NNAEC) that was unique to the high-capacity massive 
MIMO that worked under dynamic and hardware vicinage 
of wireless environments. With a hybrid deep learning 
model, which combines convolutional layers to extract 
spatial features, and one employing bidirectional LSTM 
networks to model temporal errors, and a feedback 
mechanism that uses reinforcement learning, the pro-
posed hybrid system has all the features that can adapt 
to changes in the channel conditions quite well and can 
perform much better compared to the traditional error 
correction mechanisms. Detailed simulation experi-
ments and hardware-in-the-loops validations demon-
strate that the NNAEC is able to realize significant Bit 
Error Rate (BER) and inference latencies reductions rel-
ative to LDPC, Polar and fixed model neural decoders. 
Moreover, Xilinx ZCU104 based hardware prototyping 
proves its compatibility with real-time implementa-
tion in edge-based and latency-sensitive devices, such 
as 5G/6G base stations, UAV-MIMO systems, and smart 
industries. That the system can generalize over: mod-
ulation schemes, channel fading models and antenna 
configuration only serves to demonstrate the scalability 
and robustness of the system. Investigations on mak-
ing this framework able to work in conjunction with 
multi-user channel estimation and error correction, and 

incorporating neuromorphic processing units to achieve 
ultra-low power operation, and the development of fed-
erated learning-based adaptive decoding strategies of 
various wireless nodes in a distributed architecture are 
behaviors that will be performed in the future.
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