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Abstract

Dependable signal detection has also been a major concern in real-time wireless com-
munication especially in the case of fading channels that cause non-adaptive distortion 
and deteriorate the overall performance drastically. The conventional detection meth-
ods, like the maximum likelihood detection, are not always adaptive in the circumstances 
of dynamic and therefore unpredictable channel conditions, and particularly in the cases 
when the statistical profiles are unknown or vary too quickly. In order to address these 
shortcomings, the papers introduce a new paradigm of deep learning signal detection 
trained to learn hierarchies and temporal patterns of raw received signals, which by their 
pas integrate convolutional neural networks (CNN) and recurrent neural networks (RNN). 
The trained architecture is end-to-end that is able to map the noisy distorted inputs to 
their symbols which are inherently transmitted in the context of channel state informa-
tion. Heavy simulation over Rayleigh and Rician fading channels with different Doppler 
spreads and SNR values shows that the suggested approach shows substantial improve-
ment over the traditional maximum likelihood and classical machine learning-based detec-
tors regarding bit error rate (BER), inference latency and computational overhead. Such 
results emphasize the performance as well as the flexibility of deep learning model in very 
dynamic propagation conditions. On the whole, this paper draws the conclusion that deep 
learning is a perspective direction to solve the problem of real-time detection of a signal in 
next-generation wireless networks, such as a 6G or IoT edge setup.
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Introduction

With the blistering development of wireless communica-
tion technologies due to the use of 5G/6G, Internet of 
Things (IoT) and edge computing, an ever-growing need 

arises in the establishment of a trustful and efficient sig-
nal detection mechanism. Among the challenges in this 
field is multipath fading, Doppler effects as well as time 
variable propagation scenarios, which drastically reduce 
accuracy of detection and performance of the system.
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with regard to bit error rate (BER), delay and the robust-
ness of the model.

Literature Review

Signal detection in wireless communication has trans-
formed over the past several years due to deep learning 
(DL) and machine learning (ML), especially in wireless 
communication situations that involve multipath fading 
and noise along with uncertainty in a transmission chan-
nel. The conventional model-based detectors e.g. max-
imum likelihood (ML) and minimum mean square error 
(MMSE) detectors tend to be sensitive to channel esti-
mation errors, and do not adapt well in time-varying or 
non-stationary conditions. Systems with DL have proved 
to be highly promising since they allow data-driven rep-
resentations that have an ability to generalize across an 
expansive subrange of channel circumstances.

Initial research of [1] described a deep neural network 
(DNN) based architecture to the OFDM systems over 
Rayleigh fading channels to improve the performance in 
terms of the bit error rate (BER) when compared to ML 
detection. As is demonstrated in [2, 17], Autoencoders 
offer end-to-end learning of a communication system 
where the neural networks can mimic complex channel 
effects without explicit CSI. The paper [3] suggested a 
detector using convolutional neural network (CNN) on 
the basis of which massive MIMO systems should expe-
rience better BER outcome with Rician fading channels, 
but at the price of extra overload of computations.

The inherent challenge of interpretability and gener-
alization was solved by [4, 18], offering a model-based 
deep learning method using highly trained knowledge 
and a learning-based inference to be more robust and 
efficient. In the same manner, [14, 16] suggested an 
iterative belief propagation with BP-CNN structure 
that incorporates deep learning to achieve efficient 
decoding.

Recent developments have as well concentrated on 
developing memory-aware architectures. The recur-
rent neural networks (RNNs) especially long short-term 
memory (LSTM) networks [6] have been found useful 
in monitoring channel dynamics that are time varying. 
The works of [10], [13,19] observed DL in sparse signal 
detection and IoT, whereas [15] solved a massive access 
system in 5G and general purposes by combining DL to 
combine detection and resource allocation.

Additionally, beamforming technology and MIMO 
have been studied, whereby the influence of spatial 

The traditional approaches to signal detection (matched 
filtering, maximum likelihood (ML) estimation and min-
imum mean square error (MMSE) methods) are usually 
based on the conditions that precise channel state infor-
mation (CSI) are available, and distinctive models of an 
idealized, stationary channel are utilized. But this does 
not hold in real applications because mobility, interfer-
ence and channel variability in real time will break this. 
Consequently, the traditional detection schemes are 
considerably weak in environments that are non-linear 
and dynamic.

With the introduction of deep learning (DL) commu-
nication systems design is entering a paradigm shift 
that promises to enable the joint design and learning 
of non-linear, complex mapping between data without 
necessarily having to model the channel explicitly. In 
particular, convolutional neural networks (CNNs) archi-
tectures and architectures using recurrent neural net-
works (RNNs) have shown a good potential in capturing 
spatial and temporal dynamics in communication sig-
nals. According to recent research, it is indicated that 
DL-based signal detectors have the potential to outper-
form traditional algorithms especially in various and dif-
ficult conditions of channels.

Although this is a significant development there are still 
some areas of concern that need to be addressed which 
include the latency of inference being an issue, being 
able to adapt to new unseen characteristics of a channel 
as it is not always read in advance and the computational 
requirements of the development that needs to be effi-
cient enough to be placed at the edge. The proposed 
research will tackle all these limitations by introducing a 
new deep learning-based signal detection system, based 
on the combination of CNN and RNN systems in order to 
achieve robust performances under real-time conditions 
and under fading wireless channel conditions.

This proposed model in figure 1 is tested with large 
amounts of simulation in both Rayleigh and Rician fading 
conditions under all Doppler spreads and signal to noise 
ratio (SNR) scenarios. It has been found that across more 
benchmark methods, results show significant betterment 

Fig. 1: Block diagram of the proposed deep learning-
based signal detection system.



Christy SNL et al. 
Deep Learning-Based Signal Detection Techniques for Real-Time Communication in Fading Channels

299National Journal of Antennas and Propagation, ISSN 2582-2659

The first stages of the model are (one or more) convolu-
tional blocks that learn local features as representations 
of the input signals (e.g. IQ samples over time, or spec-
trograms). Spatial filtering in this CNN layer group rec-
ognizes short term structures like transitions between 
symbols or pulse shapes or the characteristics of mod-
ulated waves. Between convolutional layers activation 
functions (e.g., ReLU) are usually added and regions of 
interest are minimized using max-pooling layers.

The output of the CNN block is then fed to a recur-
rent layer/network, example may be Long-Short-Term 
Memory (LSTM) or Gated Recurrent Unit (GRU) network. 
These layers will interpolate on the temporal depen-
dencies and sequential correlations: a very important 
property in fading situations where the signal features 
depend on time because of mobility, multipath, or 
Doppler. The hidden states in the recurrent layers aids 
in learning time varying behavior of channels without 
needing explicit knowledge of channel states.

To additionally increase the model capability toward 
paying attention to relevant signal components an addi-
tional attention mechanism can be introduced sub-
sequent to the RNN layer. The weighting mechanism 
introduces flexibility in the temporal importance and 
enables the network to capture more important time 
steps either by time steps that have better quality sig-
nals or more discriminative ventures.

The last architecture output is fed through a fully con-
nected (dense) layer having either a softmax activation 

diversity and antenna adaptation contributed in enhanc-
ing detection reliability [7, 8, 11]. The cognitive and 
energy- efficient radio paradigms designed in [9, 12, 20],  
respectively, contributed namely in the area of increas-
ing the spectrum usage and minimizing power consump-
tion in detection architectures.

Nevertheless, there are several open issues even with 
such advancements: most current approaches leverage 
masses of labeled data, and they have an inference 
latency—which is costly in case of real-time inference. 
In addition, it is often difficult to generalize them to 
new and unfamiliar fading conditions. These gaps are 
to be filled by the suggested method of implementing 
a hybrid CNN-RNN signal detection scheme with online 
adaptation. This is able to learn spatial and temporal 
characteristics efficiently and dynamically adapting to 
real-time variations in channel conditions and requires 
less retraining and large training data sets.

Proposed Methodology

Hybrid CNN-RNN Signal Detection Architecture

The presented signal detection pipeline is established 
with a hybrid deep learning structure which unites 
Convolutional Neural Networks (CNNs) and Recurrent 
Neural Networks (RNNs) to use both spatial and tempo-
ral characteristics of raw signal received data. This is 
the combination that is especially useful in the fading 
environments, where the signal is deteriorated both by 
the local noise structure and time-varying propagation.

Table 1: Comparative Analysis of Existing and Proposed Signal Detection Systems.

Ref Approach / 
Technology

Dataset / 
Environment

Key Results Limitations of Existing 
System

Proposed System 
Improvements

[1] DNN-based detection Rayleigh fading, 
simulation

BER ↓ vs. ML High training data 
requirement

Online adaptation, 
reduced data usage

[2] Autoencoder-based 
system

AWGN, Rayleigh 
fading

BER ↓, SNR ↑ Poor generalization to 
unseen channels

Robust hybrid CNN-RNN 
structure

[3] CNN for massive 
MIMO

Rician fading, 
simulation

BER ↓ Computationally 
expensive

Efficient, scalable 
design

[4] Model-driven DL Synthetic fading 
data

BER ↓, enhanced 
interpretability

Limited to predefined 
channel models

Data-driven 
generalization

[10] DL-aided SCMA for IoT Massive IoT 
simulation

BER ↓, support for 
grant-free access

Channel overload in 
dense networks

Adaptive and 
lightweight inference

[14] Iterative BP-CNN 
decoding

Synthetic channel 
simulation

Fast convergence, 
BER ↓

Fixed graph assumptions General-purpose RNN + 
CNN stack

[15] Massive access via DL 5G access scenarios Throughput ↑,  
Latency ↓

High system overhead Parallel processing and 
fast inference

— Proposed CNN-RNN + 
Adaptation

Real fading and 
synthetic data

BER ↓↓, SNR ↑, 
Latency ↓

— —
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This algorithm makes it possible to constantly optimize 
the model operating under dynamic conditions of com-
munication, allowing to achieve better resistance to bit 
errors rate (BER) and latency. The computational effi-
ciency is achieved by the use of threshold-based update 
condition whereas updates to the gradients are done 
incrementally which enables speedy adaptation without 
compromising stability.

Figure 3 represents the flow chart of the proposed 
Online Adaptation Mechanism of Signal Detection 
that allows the hybrid CNN-RNN model to update its 
parameters adaptively according to real-time channel 
status.

The input is a ready-trained system and a flow of sig-
nals that is received. In every incoming signal, the fea-
tures in the signal are extracted and processed through 
the model to produce the predicted output. In case the 
respective corresponding ground truth is present, the 
loss is calculated. When the loss goes above the spec-
ified threshold the model is retrained by backpropaga-
tion with a low learning rate. The mechanism achieves 
effective online training without the need of re-training, 
is adaptive to non-stationary fading environment with 
reduced overhead computation.

(symbol classification) or the linear activation (regres-
sion-based signal estimation). A simple, end-to-end 
training is performed though supervised learning, 
where loss is characterized by categorical cross-entropy 
or mean squared error, depending on whether one aims 
at object detection or not. Such heterogeneous archi-
tecture, as was provided in figure 2 allows a strong 
reception at a high variety of SNR and Channel con-
ditions, with its low inference latency, being applied 
adequately to transient implementation- in wireless 
receivers.

Online Adaptation Mechanism

In order to guarantee a high-performance capability in 
real-world wireless settings, it includes in the proposed 
system; online adaptation mechanism that allows signal 
detector to optimally adapt its parameters to changing 
channel conditions. This module enables the network to 
adaptively train itself gradually when being deployed, 
hence enhancing generalization and thus address a 
decline in performance due to the introduction of a 
non-stationary or unfamiliar fading conditions.

When compared to conventional offline training, 
where huge datasets should be accumulated and mod-
els remain fixed, online adaptation module operates 
on an ultra-lightweight, on-the-fly basis by updating 
model weights. The adaptation is operated under 
the condition when a prediction error is more than a 
certain pre- defined threshold diminishing redundant 
calculations and preventing overfitting to short-term 
noise.

The method presupposes that only a few examples 
labeled examples can be used at deployment time 
(e.g. pilot signals, retransmissions, or feedback). When 
such labels exist, we use them to estimate the loss and 
decide on incremental updates. This process will make 
the model even in operational environments able to 
learn without complete retraining and minimize the loss 
of analytics and computational expense.

Algorithm 1: Online Adaptation for Deep 
Learning-Based Signal Detection

Input:
• Initial trained model M0
• Incoming signal stream S={s1,s2,...,sn}
• Learning rate η
• Update threshold θ
Output:
• Adapted model Mt
• Detected output signals D={d1,d2,...,dn}
Pseudocode:
1: Initialize model M ← M₀
2: Initialize output list D ← ∅
3: for each signal sample si ∈ S do
4:   Extract features fi ← Feature Extractor(si)
5:   Predict output di ← M(fi)
6:   Append di to D
7:   if ground truth yi is available then
8:     Compute loss ℓ ← Loss Function(di, yi)
9:     if ℓ > θ then
10:      Compute gradient ∇ℓ ← Backpropagation(ℓ)
11:      Update model M ← M - η ∇ℓ
12:    end if
13:   end if
14: end for
15: Return adapted model M and predictions D

Fig. 2: Architecture of the hybrid CNN-RNN signal 
detection network.

Input
Layer

Output
Layer

Convolutional 
Layers

Recurrent layers 
temporal modeling

Hybrid CNN-RNN Network
Feature Extraction Temporal Modeling



Christy SNL et al. 
Deep Learning-Based Signal Detection Techniques for Real-Time Communication in Fading Channels

301National Journal of Antennas and Propagation, ISSN 2582-2659

Mathematical Modeling

This part outlines the mathematical formulation to 
the proposed deep learning-based signal detection 
approach, which is over a fading communication chan-
nel. The formulation also embraces the model of the 
signal, goal of detection, loss and optimization method 
to train the neural network.

Channel Model
The equation that models the signal received in the 
wireless communication system and influenced by a fad-
ing channel is the following one:

 y(t) = h(t) × x(t) + n(t) (1)

Here:
• x(t) is the transmitted signal at time t,
• h(t) is the complex, time-varying channel coefficient 

representing fading effects,
• n(t) is additive white Gaussian noise (AWGN) with zero 

mean and variance σ²,
• y(t) is the received noisy signal.

This formula is used to model typical wireless propaga-
tion conditions e.g. Rayleigh or Rician fading channel.

Detection Objective
The objective of signal detection system is to retrieve 
the original signal x(t) that was transmitted to the 
received distorted signal y(t).To this end, deep learning 
model is trained to estimate an inverse of a channel.

This network is referred to as f−¹(y(t); Θ), with Θ being 
the network learnable parameters (weights and biases). 
The output expected to be acquiring is:

 ĥx(t) = f−¹(y(t); Θ) (2)

In this case, ĥx(t) is the approximation signal that is 
transmitted by the neural network.

Here, ĥx(t) is the estimated transmitted signal gener-
ated by the neural network.

Loss Function Formulation
Training of the model is based on labeled data of N 
examples with pairs of a received signal and a transmit-
ted signal (y₁, x₁), (y₂, x₂), ..., (yn, xn). When the total 
loss per the dataset can be calculated as follows:

 
1 ˆ( ) ( , )def i i

i

L L x hx
N

Θ = ∑  (3)

The L det denotes the detection errors of any particular 
sample. It is shaped by how the signal is to be viewed: a 
regression or classification problem: 

• (a) Mean Squared Error (MSE) – used when signal ampli-
tudes are continuous:

 Ldet = ||xi − ĥxi|| (4)

• (b) Cross-Entropy Loss – used for digital modulated sig-
nals (e.g., QPSK, 16-QAM):

 det
ˆ( )log( ( ))i i

k

L x k hx k= −∑  (5)

In the cross-entropy formulation there are:

• xi(k) is the ground truth one-hot encoded vector,
• ĥxi(k) is the predicted probability of the k-th modula-

tion symbol,
• K is the number of possible symbol classes.

Optimization Objective
The objective of the training is to identify the optimum 
network parameters Θ* which shall produce the mini-
mum loss as follows:

 Θ = arg min L(Θ)* (6)

Receive signal 
sample

Ground 
truth

Loss > 
thread?

Extract features

Compute loss

End

Yes

Yes

No

No

Predict output

Return output

Fig. 3: Flowchart of the Online Adaptation Algorithm 
for Signal Detection.
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channels without a line-of-sight (LoS) component were 
simulated using the Rayleigh model and channels with 
a strong LoS component were found by using the Rician 
model with K-factors varying between 3 and 9. Doppler 
spreads were ranging between 5HZ-200HZ to depict low-
and high-mobility conditions. In order to gauge robust-
ness under noisy channel condition, system was tested 
at signal to noise ratio (SNR) of 0 dB30 dB.

The training and the evaluation set comprised artifi-
cial and real-world signal traces. Standard modulation 
schemes to generate synthesized IQ samples were BPSK, 
QPSK and 16-QAM. Moreover, captures of over-the-air 
signals were conducted by means of software-defined 
radio (SDR) platform to generate a more realistic data-
set that would match the practical impact on signals. 
These were the samples on which testing the general-
ization of the models into real life situations was done.

Hardware and Configuration

The suggested model was tested and educated with 
an extreme performance workstation involving an Intel 
Core i9 CPU, 64 GB RAM, and an NVIDIA RTX 3090 GPU 
with 24 GB of VRAM. Such setup allowed training with a 
significantly increased speed and inference performance 
analysis in real-time. The code was based on the soft-
ware stack of Python 3.9, TensorFlow 2.x, and MATLAB 
R2023a, which was developed fast and stable.

A hardware-in-the-loop (HIL) validation system was 
developed to assess over-the-air exercise performance 
that implemented a Universal Software Radio Peripheral 
(USRP) B210 SDR. SDR was based on 2.4 GHz ISM band, 
having TX/RX gain, as well as a sample rate of 2 MS/s. 
It simulated, used real world transmission and recep-
tion changing the gap between simulated data and 
physical RF signals. Inference latency and throughput 
of pre-trained models was done on the workstation 
using a lightweight inference engine on the GPU of the 
workstation. It took less than 3 milliseconds of latency 
per detection operation, which proves that it is possi-
ble to use it in the real-time context of wireless edge 
computing.

Parameter Settings

The system was tested in diverse channel and mod-
els as presented in Table 2. They will involve modula-
tion scheme such as BPSK and QPSK, and 16-QAM with 
maximum symbol rates set as 1M bps and minimum 
as 100kbps. To model a channel, Rayleigh fading was 
applied with exponential power delay profile and Rician 

Gradient-based learning almost always optimizes this 
objective, either with a Stochastic Gradient Descent 
(SGD) method, Adam or RMSprop. The rule of updating 
of every iteration is:

 Θ ← Θ - η × ∇ΘL(Θ) (7)

Where:
• η is the learning rate,
• ∇ΘL(Θ) is the gradient of the loss with respect to the 

network parameters.

This back-and-forth process of training stops when a 
convergence criterion is satisfied, usually which is sig-
nified by the convergence of the loss value or validation 
accuracy.

Experimental Setup

This part is a description of the experimental arrange-
ment that was employed in testing the performance 
of the proposed deep learning-based signal detection 
architecture. It will contain configuration of simulation 
tools, hardware specifications, the sources and datasets 
and the configuration of hyperparameters.

Simulation Environment

In figure 4, experimentation was done through a hybrid 
simulation framework via MATLAB which was used to 
model the wireless channel and TensorFlow to develop 
deep learning. Two of the most popular fading chan-
nel models Rayleigh and Rician were incorporated in 
order to simulate realistic wireless conditions. Multipath 

Signal 
Generator Preprocessing 

Block

Deep Learning 
Detection Block

Feature 
Extraction 

Module

Detected 
Output 

Symbols

Noise 
addition

Synthetic 
Real signal

Fig. 4: Simulation Framework and Signal  
Flow Diagram.
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drastically. This reversed trend proves the success of 
learning and strong generalization, which proves the 
correctness of the use of this hybrid CNN-RNN architec-
ture to detect signals in fading channels.

Results and Discussion

The effectiveness of the proposed signal detection signal 
deep learning-based streaming framework was widely 
tested against different simulated channel scenarios like 
Rayleigh and Rician fading channels at Doppler spreads 
of 5Hz to 200Hz. Bit error rate (BER), delay, and gen-
eralization capacity were taken as major evaluation 
criteria.

Bit Error Rate Performance

The maximum reduction in the BER attained by the pro-
posed hybrid CNN-RNN was to the order of up to 30% 
under a wide variety of SNR conditions (0 to 20 dB) when 
compared with conventional methods as the maximum 
likelihood (ML) and minimum mean square error (MMSE) 
detection. This had been best realized in the low SNR 
regimes and fast-fading links where conventional det 
theft beamers fail because of inaccurate or in the case 
period channel estimates.

From figure 7 results confirm the model’s ability to learn 
complex channel behavior without requiring explicit 
channel state information, thereby improving robustness 
and detection accuracy in practical deployments.

Latency and Real-Time Suitability

In order to compare the suitability of the proposed hybrid 
CNN-RNN architecture in real-time settings, the latency 

fading cases were those with different LoS strength with 
K-factor values.

The architecture of deep learning model involved two 
convolution layers with a gate multi-way recurrent 
unit (GRU) layer having 128 hidden units and attention 
mechanism that weighted over time. In the case of 
classification-based detection, a cross-entropy loss and 
softmax output have been applied. In the case of regres-
sion-based detection applications, a mean squared error 
(MSE) was used. Adam optimizer was applied during the 
training process with learning rate, 0.001 and batch size 
of 128 samples. Early stopping using validation loss was 
used as the criterion of training the model after 100 
epochs.

It was mapped on the hardware side with center fre-
quency of 2.4 GHz, -20 dB TX/edit a RX gain, and the 
band width of 1 MHz. The choice of settings was aimed 
at imitating normal industrial and IoT transmission 
settings.

Figure 5 shows us the curve of the neural networks of 
the loss during training the data using the training and 
validation sets over 50 iterations. The loss in training 
trains smoothly and exponentially and which gives the 
impression of learning and good optimization. The trend 
in the validation loss is very close to the training loss 
curve indicating that the model does not overfit and the 
model is generalizing to new data. Such behavior shows 
that the training process is reliable and the selection of 
hyperparameters is adequate.

Figure 6 displays the learning performance of the model 
through convergence both in terms of accuracy and bit 
error rate (BER), though 50 epochs. When the train-
ing runs its course, the accuracy of the model gradu-
ally reaches perfection on detecting while BER drops 

Fig. 5: Neural Network Loss Curve over Epochs.
Fig. 6: Model Accuracy / BER Convergence During 

Training.
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Table 2: Simulation and Hardware Configuration Parameters.

Category Parameter Value / Description

Modulation Modulation Schemes BPSK, QPSK, 8-PSK, 16-QAM

Symbol Rate 100 kbps – 1 Mbps

Channel Models Fading Types Rayleigh, Rician, AWGN

Doppler Spread 5 Hz – 200 Hz

Rician K-Factor 3 – 9

SNR Range 0 dB – 30 dB

Neural Network Architecture 2 Conv layers → GRU (128 units) → Attention → Dense

Activation Functions ReLU (CNN), Tanh (GRU)

Loss Function Cross-entropy (classification), MSE (regression)

Optimizer Adam

Learning Rate 0.001

Batch Size 128

Epochs 100 (with early stopping)

Hardware Workstation CPU Intel Core i9

RAM 64 GB

GPU NVIDIA RTX 3090 (24 GB VRAM)

SDR Configuration SDR Device USRP B210

Center Frequency 2.4 GHz

TX/RX Gain 20 dB

Bandwidth 1 MHz

Sampling Rate 2 MS/s

Fig. 7: BER vs. SNR comparison between the 
proposed method and existing ML/MMSE/CNN-based 

detectors.

of inference was calculated on both GPU and CPU based 
on the input frames of different lengths. It was demon-
strated on a GPU-accelerated workstation with the 
NVIDIA RTX GPU having the average inference latency of 
less than 1 millisecond per inference frame that is well 
under the real-time limitation applied to current wireless 
systems such as 5G edge computing, UAV communica-
tions, and latency-sensitive IoT implementations.

The existence of low-latency performance is explained by 
the streamlined architecture that uses the parallel pro-
cessing properties of convolutional layers and time effi-
ciency of gated recurrent units. Such features facilitate 
fast end to end inferencing with high accuracy detection.

As illustrated in Figure 8, even at a bigger frame size 
(up to 1024 samples), inference takes a low latency of 
less than 2 milliseconds with GPU. Conversely, the CPU-
based latency sole grows tremendously with frame 
length up to and above 23 milliseconds. The trend gives 
credence to the significance of harnessing the support 
of hardware acceleration in implementing real-time 
deep learning-based detections systems.

Such findings show that the suggested structure can be 
successfully used in the real-world context where the 
system needs to perform with ultra-low latency, and the 
better compromise between the computational perfor-
mance and the detection reliability is reached.

Generalization and Channel Adaptation

The biggest advantages of this CNN-RNN based signal 
detecting framework are observed in the powerful 
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Fig. 8: Inference latency vs. frame length across 
different hardware setups (CPU vs. GPU).

generalization to unseen and dynamic channels. To 
test this we utilized the model on various out-of-dis-
tribution channel profiles with Doppler shifts, fading 
rates, and path loss values that were exterior to the 
training set.

In spite of this domain shift, the system achieved stable 
bit error rate (BER) performance and very little degra-
dation was observed documenting that the system could 
successfully extract generalized features instead of 
overfitting the known channel statistics.

Besides, the mechanism of the online adaptation had 
also contributed to the robustness of the system. The 
usage of runtime updates of model parameters by grad-
ually increasing the parameters is accredited with the 
opportunity of the detector to adjust to the chang-
ing channel conditions at a quick pace without being 
required to train the full model. Such flexibility clearly 
has a big advantage to deploy in highly dynamic environ-
ments, which include vehicular networks, UAV swarms, 
and mobile IoT gates.

As revealed in Figure 9, the online adaptative mech-
anism has a consistent BER reduction even in every 
tested time variations, and the highest increases are 
experienced during abrupt channel variation periods. 
This emphasizes the inherent possibility of the system 
being continuously self-tuned thus sustaining the detec-
tion performance even with a substantial change in the 
environmental conditions away in comparison with the 
training distribution.

These results confirm the suggested architecture as a 
scaled and an adaptive solution to reality wireless sys-
tems subject to moving and unpredictable propagation 
environment.

Fig. 9: presents the BER comparison between the 
static model and the online-adaptive model under 

varying channel profiles over time.

Trade-offs and System Considerations

Although the suggested method can bring great improve-
ments in terms of detection faultlessness and sensitiv-
ity, it has some downsides:

• The length of initial training of the hybrid structure 
is more than its traditional detectors because of the 
difficulty of such a complex architecture and learning 
of spatio-temporal characteristics.

• Real-time inference should be GPU accelerated (but is 
supported on the CPU-only).

In spite of these limitations, the system has great scal-
ability properties, which enables it to go into many 
diverse settings, such as application in high-mobility 
vehicular communications as well as large-scale IoT 
frameworks. It is flexible and strong to fading; there-
fore, it is particularly useful in the next-generation wire-
less applications.

Conclusion and Future Work

In this paper, a new deep learning method of signal 
detection framework that is capable of satisfying the 
real time requirements of wireless communication sys-
tems that have to operate under adverse conditions of 
fading has been proposed. The hybrid architecture com-
bines convolutional neural networks (CNNs) so that the 
spatial feature extractions can be performed and the 
recurrent neural networks (RNNs) so that time depen-
dence can be modeled. Consequently, the method can 
capture local structures of signal as well as the long-term 
dependencies generated by the time-varying channels.

Online adaptation The inclusion of online adaptation 
mechanism can further enhance the resilience of the 
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system to changing environments since it allows the 
lightweight and real-time update of the model without 
full re- training. The simulation of the proposed frame-
work in various channel conditions, including Rayleigh 
and Rician fading proved that the proposed scheme 
drastically outperforms other conventional detection 
algorithms including ML, MMSE and standalone CNNs 
regarding bit error rate (BER), inference delay, and sen-
sitivity to channel variation.

The offered solution holds great promise of 5G/6G 
Edge devices, UAV communications, and real-time IoT 
networks.

Future Work

In order to further increase the applicability and scal-
ability of the framework, future studies will aim at:

• Expansion to massive MIMO systems, particularly, in 
the case of joint spatial-temporal detection.

• Describing the model to millimeter-wave (mmWave) 
and terahertz (THz) frequency bands where beam-
forming and directional propagation occur in some 
new issues.

• Research on bio-compatible wireless communication 
based on low-power communication technology, in 
low power implantable medical communication.

• Conceptualizing hardware-accelerated deployment 
with FPGA, edge TPUs and neuromorphic processors 
to free up energy consumption and enhance real-time 
inference at the edge.

By dealing with these directions, the suggested work will 
establish the basis of the following generation of intelli-
gent, adaptive, and energy-efficient wireless receivers.
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Table 3: Summary of key performance metrics (BER, 
latency, adaptation time) compared to baseline methods.

Method BER @ 
10 dB

Latency 
(ms)

Adaptation 
Time (ms)

ML Detector 0.18 1.5 N/A

MMSE Detector 0.16 1.3 N/A

CNN-based 0.12 1.1 N/A

Proposed (CNN-RNN + 
Adaptation)

0.08 0.9 0.3
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