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Abstract

In this study, the researcher intends to test the design of an AI-powered UAV-based edge 
computing application that will facilitate faster and reliable wireless communication in 
emergency settings, including natural catastrophes or infrastructure failure. The terres-
trial networks in most cases do not work under such conditions and an aerial solution that 
is intelligent and flexible is therefore necessary to work in real time processing high data 
and restoration of the networks. The system proposed introduces autonomous swarms of 
UAVs capable of edge computing nodes and deep reinforcement learning (DRL) to opti-
mize the trajectories of the UAVs, as well as distribution of both computing tasks and 
routing communication dynamically. Each UAV is used as a mobile edge node and all of 
them create a self-organizing aerial network which is flexible about the changes in terms 
of user demand, topology, and energy limitations. The DRL model was Proximal Policy 
Optimization (PPO) based, and simulations were done in a 4-km by 4-km disaster area. 
Findings show that decision latency is 74 percent shorter, network throughput is 61 percent 
higher, and coverage loss is 5.2 percent instead of static base stations and standard mesh 
networks. This UAV AI-based design can provide a scalable and robust low latency, high 
reliability communication service within the category where the infrastructure does not 
exist and can solve the gap between the ground users and the computational services. 
Future development will entail satellite connectivity using the model as well as multi-
modal sensor fusion extension of the model.
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Introduction

Background

Terrestrial communication networks in areas that are 
more susceptible to disasters, areas prone to war or 

areas with compromised infrastructure become dysfunc-
tional and this creates a big challenge in coordination 
amongst the first responders [10]. In these situations, 
the Unmanned Aerial Vehicles (UAVs) offer an expen-
sive and fast-deployable platform that can be used to 
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The rest of this paper is planned as follows: Section 3 
does a review of related works. System architecture 
and communication models are described in section 4. 
The optimization framework based on DRL is introduced 
in section 5. The simulation setup is described in sec-
tion 6. The performance is assessed in section 7. Section 
8 talks about security and scalability and Section 9 car-
ries the conclusion and the future directions.

Related Work

The latest development of using UAV-manned wireless 
networks and mobile edge computing has the potential 
of disaster communication and immediate data service 
after the disaster. Nevertheless, the existing solutions 
typically do not provide a thorough incorporation of 
aerial mobility and edge intelligence as well as adaptive 
decision-making processes under constrained settings 
based on an emergency-oriented approach [5]. 

Proposed a relay framework using a UAV as the relay in 
disaster recovery such that the wireless connectivity can 
be temporarily reestablished in the collapsed ground-
based networks. Although it performs well as line-of-sight 
transmission, their work does not have edge computing 
capabilities and thus is not befitting in a latency-sen-
sitive application that needs local data pro cessing [6]. 
Introduced an architecture of mobile edge computing 
with the help of UAVs, which allows localization of data 
processing around users affected. The limitation of their 
solution, though, is that it is restricted to single-UAV sys-
tems, which is not scalable and resilient in greater or 
messier disaster fields [7]. Investigated the UAV path plan-
ning under the surveillance application implemented by 
artificial intelligence. The model is effective in terms of 
mobility optimisation; it lacks real-time network dynamics 
and load-balancing of computations, which are vital prop-
erties in edge-based multi node systems [8]. Invented a 
DRL based method to optimize UAV coverage. However, 
the method deals only with coverage-only measures with-
out a shared optimizing solution in which the service of 
offloading tasks, the assignment of UAVs, and communica-
tion restrictions are all taken into account [11].

quickly set up temporary networks. Combined with 
edge computing features, UAVs have the potential to 
operate on local data, which triggers real-time analytics 
and decisions- support capabilities and minimizes latency 
and reliance upon backhaul connections by being able to 
access data collected locally without having to send it to 
the cloud [1, 2]. 

Motivation and Problem Statement

Nevertheless, even despite its potential, the major-
ity of envisioned types of UAV-based emergency net-
works continue to utilize pre-configured flight paths 
and centralized control channels that are insufficient 
in the highly dynamic and unpredictable disaster sce-
narios [12]. The misallocation of tasks, which results 
in communications bottlenecks and redundancy of 
coverage, are the characteristic weaknesses of tra-
ditional systems because of the absence of real-time 
coordination and intelligence about computations [3]. 
Furthermore, the mentioned UAV relay systems barely 
cover onboard data processing and the adaptation with 
AI, which is critical to latency-sensitive applications, 
including thermal imaging, damage inspection, and vic-
tim-searching [4].

Contribution

In order to overcome these shortcomings, the current 
paper suggests an AI-based UAV-supported edge com-
puting system designed to target emergency wireless 
networks in particular. The contributions are mainly:

• Distributed aerial edge network design, in which 
UAVs have edge processors that make autonomous 
decisions [13].

• Development of a deep reinforcement learning (DRL)-
based controller of UAV real time trajectory planning 
and task offloading.

• A simulation-based performance comparison that pits 
the system against airive forms of static base sta-
tion, and simple UAV mesh architecture w.r.t. latency, 
throughput, energy consumption [9].

Table 1: Comparative Analysis of Related Work.

Study Focus Limitation

[1] Zeng et al. (2022) UAV relay networks for disaster recovery No edge computing integration

[2] Gupta & Sharma (2023) UAV-assisted mobile edge computing Limited to single-UAV scenarios

[3] Raza et al. (2024) AI optimization for UAV path planning Does not account for network load

[4] Liu et al. (2023) DRL for UAV coverage No joint compute-communication optimization
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It is described as a system of the edge-enabled UAVs that 
create a wireless mesh network communicating with the 
ground users and sensors. Each UAV has pre-installed 
GPU/ARM system-on-chips (SoCs) and deep reinforce-
ment learning (DRL) agent to execute the trajectory 
planning, task offloading, and resource optimization 
in consideration of the latency, energy consumption, 
and coverage gap. The architecture allows dynamically 
made, decentralized, and near-realtime decision making 
in dynamic disaster situations.

Communication Model

The UAVs communicate through a multi-hop ad hoc 
wireless mesh network which is built on the IEEE 
802.11s wireless mesh standard or the millimeter wave 
(mmWave) backhaul standard depending on the range 
and bandwidth needs.

• Ground-to-UAV connection: The sensors or end-user 
devices use short-range access technology (LTE-U, 
NR-U (5G unlicensed) or Wi-Fi Direct) to connect with 
the closest UAV.

• UAV-to-UAV links: These links are established by the 
protocols of mesh routing UAVs using each other to 
continue delivering data to each other as the topology 
and load change, using signal strength, load gathering, 
and routing consequences.

• Task processing: Tasks are locally processed at the 
recceiving UAV or offloaded to the available nearby 
UAVs based on computational availability, energy sta-
tus and network loads.

This model achieves low latency, dynamic coverage, and 
tolerance of node failures, all of which is vital to emer-
gency deployments.

Conversely, the outlined framework entails the uni-
fication of the edge computing, deep reinforcement 
learning (DRL), and multi-UAV coordination systems. 
The approach allows the architecture to adapt to the 
changing emergency environments by optimizing the 
task offloading, the network routing and the flight path 
simultaneously, creating a more resilient and smarter 
climatic environment in real time communication and 
computation during disasters.

System Model and Architecture

In this part, the architecture design and models behind 
the planned AI-based UAV-empowered edge comput-
ing platform on emergency wireless networks will be 
given. The system combines edge computing deployed 
on UAVs, wireless mesh networks, and distributed DRL 
to optimize operations in disaster settings in a real-time 
manner.

Architecture Overview

The architecture is proposed as a quick deployment sys-
tem that is self-organizing in under served infrastructure 
or emergency areas. It is constituted of the following 
main elements:

• Edge-enabled UAVs: All the UAVs have a lightweight 
processing device, including embedded GPU (e.g., 
NVIDIA Jetson TX2) or SoCs based on ARM, filling real-
time execution of AI models, task scheduling, and 
data analytics on the edge.

• Sensor nodes and ground user terminals: Those 
are voice terminals, wearable devices, thermal or 
LiDAR sensors, and GIS transmitters installed by first 
responders or IoT nodes on the ground. They con-
stantly produce multi-modal data which is to be pro-
cessed or passed in the shortest time possible.

• Embedded DRL agents: DRL model will be deployed 
at an onboard computer, allowing genuine and adap-
tive separation to offloaded tasks, route planning and 
inter-UAV control to be executed autonomously and 
state- dependently, assessing real-time surrounding 
data.

Coupled, individual parts compose a distributed, 
AI-optimized aerial edge network with the capacity 
to flexibly adapt to changing emergency conditions. 
Figure 1 shows the general system design, where the 
layered customization of the UAVs, embedded edge pro-
cessing units, the DRL agents, and the ground users or 
sensor devices is presented.

Fig. 1: AI-Driven UAV-Assisted Edge Computing 
Architecture for Emergency Wireless Networks.
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AI Optimization Framework

The suggested system comes with a decentralized Deep 
Reinforcement Learning (DRL) strategy that would pro-
mote autonomous, flexible behavior of UAVs used in 
emergency wireless frameworks. The DRL framework 
is intended to enable real-time-decisions to address in 
particular the optimization of trajectories, offloading 
tasks and keeping the coverage up, with the least pos-
sible latency and energy usage within the system as a 
whole.

Deep Reinforcement Learning Model

On board DRL agent: Every UAV is equipped with an 
onboard DRL agent, envisioned to be approximated such 
as with the Proximal Policy Optimization (PPO) algo-
rithm, a policy-gradient algorithm, which has proven 
robust and sample-efficient in high-dimensional, continu-
ous control domains. The DRL agent allows every UAV to:

• Constantly monitors its local conditions, which include 
parameters like remaining battery power, wireless 
channel status as well as the local geographical layout 
of adjacent nodes.

• Discover and revise the policy of trajectory planning, 
task scheduling and processing decisions such that the 
resulting policy maximizes the long run cumulative 
reward.

• Distribute tasks to nearby UAVs and distribute the 
workspace cooperatively via lightweight message 
passing with peers, in peer-to-peer coordination.

This distributed learning mechanism enables UAVs to 
respond to variation in the density of the nodes, data 

Computational Model

Answer: The tasks of offloading and allocation of 
resources are done separately by the UAVs depending on 
a reward-based optimization strategy. Systems are for-
mulated as a two-agent multi-agent reinforcement learn-
ing (MARL) system where it is desired that UAVs learn to 
collectively reduce the overall system cost, maximizing 
coverage, and responsiveness. This can be seen in Figure 
1, where the DRL agent is installed in each UAV and it 
can run locally to achieve optimality in flight paths and 
task offloading with respect to latency, energy, and cov-
erage goals.

Reward function R which is utilized in determining deci-
sions is defined as:

 =α ⋅ +β ⋅ −γ ⋅
latency consumption

1 1
R          CoverageGap

T E
 (1)

Where:
• Tlatency is the end-to-end task processing delay (includ-

ing transmission and queuing delays),
• Econsumpion represents the energy expenditure per UAV 

for processing and communication,
• CoverageGap quantifies the area or number of users 

currently outside the UAV network’s effective range,
• α, β, γ are tunable hyperparameters controlling the 

trade-off between latency reduction, energy effi-
ciency, and coverage maximization.

This formulation allows every UAV to adjust its behav-
ior with respect to its own local state but also taking 
into consideration global network behavior, encourag-
ing emergent collaboration and smart use of resources 
amongst the group of aircraft. Figure 2 demonstrates 
the interaction between UAVs, onboard DRL agents, 
and ground sensors on the wireless mesh network, and 
where trajectory, task offloading, and coverage deci-
sions are optimized.

Demonstration of a UAV-based edge computing in the case 
of UAVs outfitted with GPU/ARM SoC and DRL agents cre-
ate a wireless mesh network. The UAVs also interact by 
offloading tasks, trajectory optimization, coverage deci-
sion, in real-time with ground users and ground sensors.

This architecture is the root of incorporating real-time 
optimization governed by AI into an emergency com-
munication architecture that provides a flexible and 
extendable framework upon which real-time optimiza-
tion may be deployed, as further described by the opti-
mization framework of Section 5.

Fig. 2: AI-Driven UAV-Assisted Edge Computing 
Architecture.
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Simulation Setup and Parameters

To verify the work of the proposed framework of AI-based 
UAV-assisted edge computing extensive simulation test-
ing in the work on a specially developed framework that 
brought together the OpenAI Gym library, PyTorch, and 
a simulator of network-level events. This was to test the 
system characteristics at realistic emergency conditions 
including flexibility of mobility and scarcity of resources 
and unstable communication environments. The simu-
lated scenario represents a 4 km x 4 km disaster hit urban 
area in which the conventional terrestrial base stations 
(BSs) are considered to be out of service either partially 
or completely. The UAVs are used to offer connectivity 
and edge computing to users on the ground including the 
first responders and sensor nodes of IoT. Important simu-
lation parameters are outlined in Table 2.

Deployment Assumptions

• Mobility Model: UAVs use a slightly altered Gauss-
Markov mobility model wherein they use variable 
speed and semi-random movement as per the optimis-
ation driven by DRL.

• Traffic Model: Ground terminals are creating latency 
sensitive, burst data (e.g. live video, thermal map-
ping, alerts) whose arrival rates follow a Poisson 
distribution.

• Energy Model: The energy costs of a single UAV consist 
of both flight dynamics (using length of the 3D flight 
path) and the computing cost (using amount of tasks 
to be performed and the edge processing cycles).

• Channel Model: Wireless connections have probabilis-
tic Line-of-Sight (LoS) behavior characterised by path 
loss and interference that is modelled by a shadowed 
Rician fading distribution.

The simulation environment will offer the realistic 
approximation of emergency deployment scenario 
allowing the benchmarking of the solutions performance 
under the variable states and conditions in the system 

traffic and resource availabilities without the need of 
centralized controller which is mostly not practical in 
the conditions on disaster scenes.

State, Action, and Reward Design

As a Markov Decision Process (MDP), DRL model formu-
lates finding the best action of each UAV as an autono-
mous agent in response to the environment in which it 
exists.

• State Space (S) The state vector of the UAVs at time t 
is observed as:

st = [x,y,z], Ebatt, Load, Channel Quality, Nearby Nodes (2)

Where:
• [x,y,z] represents the UAV’s 3D position,
• Ebatt is the remaining battery energy,
• Load is the current task processing load,
• Channel Quality denotes signal strength or SINR,
• Nearby Nodes counts ground terminals or UAVs within 

communication range.
• Action Space (A): Each UAV selects an action from the 

following discrete set:
• Move in 3D space (±x, ±y, ±z)
• Assign or offload a task
• Drop or suspend current coverage area (if over-

loaded or moving)
• Reward Function (R): The reward signal RRR guides 

UAV behavior using a composite metric:

 =α ⋅ +β ⋅ −γ ⋅
latency consumption

1 1
R          CoverageGap

T E
 (1)

Where:
• Tlatency is the end-to-end task processing delay (includ-

ing transmission and queuing delays),
• Econsumpion represents the energy expenditure per UAV 

for processing and communication,
• CoverageGap quantifies the area or number of users 

currently outside the UAV network’s effective range,
• α, β, γ are tunable hyperparameters controlling the 

trade-off between latency reduction, energy effi-
ciency, and coverage maximization.

Within this DRL-based solution, UAVs can have real-time 
context-sensitive, reward-seeking decisions, facilitate 
collaboration, enhance resilience, and minimize network 
overheads in the mood of unpredictable emergency 
situations.

Table 2: Simulation Parameters.

Parameter Value

UAV count 10–50 (variable swarm sizes)

Communication 
protocol

IEEE 802.11s (mesh) / NR-U (5G 
unlicensed)

Processing unit NVIDIA Jetson TX2 (per UAV)

DRL algorithm Proximal Policy Optimization (PPO)

DRL framework OpenAI Gym + PyTorch

Simulation area 4 km × 4 km disaster zone

Baseline comparisons Static BS + Cloud / Ad hoc mesh
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area. The values and results are presented in Table 3. 
The numerical results are depicted in Table 3, and in 
Figure 4 in the form of line plot to provide a visual com-
parison of the same metrics.

Key Insights

• Latency Betterment: There is a 74 percent reduction 
in the median end-to-end latency in the proposed 
framework, which is mainly possible due to localized 
processing on UAVs at the edges. This removes the 
reliance on the cloud delivery thus enhancing the abil-
ity to be responsive within real-time disaster missions.

• Challenges: Improved Throughput The system reports 
a 61 % throughput improvement made possible by 
intelligent load-aware intelligent offload to the UAV 
mesh. The DRL agent successfully maintains the equi-
librium of computational loads, allocates resources 
in optimal ways, which leads to shorter execution of 
tasks, and less retransmission.

• Coverage Reliability: The rate of coverage loss also 
reduced, with the coverage loss percentage reducing 
to 5.2 percent in comparison to the original value of 
18.6 percent indicating the adaptability of the UAV 
swarm in dynamically shifting according to the tra-
jectory update based on DRL. It guarantees that the 
mobile ground users and sensors would not be out of 
range communication during the whole mission time.

and prove or disapprove the validity of decentralized 
and AI-based control mechanisms in the UAV network. 
Figure 3 shows the general deployment scenario: deploy-
ment forms of UAV and ground sensors, rescue terminals 
and the ad-hoc wireless mesh.

NVIDIA Jetson TX2-based UAVs become an ad hoc wire-
less mesh to shore up ground sensors and rescue ter-
minals. The design depicts edge-enabled UAV delivery, 
backhauling base station, and multi-hop region coverage 
on the disaster-hit region.

Performance Evaluation

In order to evaluate the effectiveness of the proposed 
AI-driven UAV-supported edge computing paradigm, we 
engaged in the comparative analysis of the performance of 
the proposed approach towards the two traditional-based 
baseline models of: (1) automated terrestrial base stations 
and cloud-based offloading, and (2) ad hoc mesh networks 
without cloud computing and edge intelligence. The analysis 
is done using key quality-of-service (QoS) and resource-ef-
ficiency characteristics, such as latency, throughput and 
coverage reliability, and energy consumption.

Dynamic UAV placements and stochastic user demand 
models with 500 independent simulation runs were 
assumed with averaged results in a 4 km by 4 km disaster 

Fig. 3: Simulated Deployment Scenario in a  
4 km × 4 km Disaster Zone.

Table 3: Performance Metrics Comparison.

Metric Baseline Proposed

Latency (ms) 135.2 35.1

Throughput (Mbps) 52.8 85.3

Coverage Loss (%) 18.6 5.2

UAV Energy Use (Wh) 91.7 63.4

Fig. 4: Performance Comparison Between Baseline 
and Proposed Framework.
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• UAV energy harvesting models, so that its mission can 
be extended using wireless or solar energy transmission.

• Multi-modal sensing and data fusion, such as ther-
mal imaging analysis, acoustic analysis, and LiDAR to 
enable more information-rich situational awareness 
and the prioritized distribution of task.

Such directions are expected to support the prepared-
ness of intelligent UAV swarms to be deployed in practi-
cal emergency communication instances.
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• Energy Efficiency: With the proposed, UAVs required 
30.9 percent less energy due to minimized flight 
redundancy as well as processing overhead through 
real-time coordination. This plays an important role 
in prolonging the UAV mission time in power limited 
disaster recovery situations.

The visuals illustrating the way the system-level per-
formance metrics of the proposed framework and the 
baseline compare on different aspects of gaming are 
shown in Figure 4, where the benefits of the presented 
framework in terms of latency, throughput, coverage 
reliability, and energy efficiency of UAVs are outlined.

Generally, the suggested architecture can greatly 
improve the agility, coverage, and computational per-
formance of UAV Assisted emergency wireless networks 
whereas providing sustainable uses of UAV energy, which 
plays a significant role in practical applications.

Conclusion and Future Work

In this paper, the authors have proposed an AI-based 
UAV aided edge computing system that can be used to 
facilitate emergency communications in infrastruc-
ture-degraded settings and was optimized using Deep 
Reinforcement Learning (DRL). The system proposed 
achieves this by incorporating mobile edge processing, 
intelligent UAV coordination and adaptive task offloading, 
as an integrated system to create a scalable and resilient 
aerial network response to disaster. Simulation brings 
forth a significant difference in performance of the frame-
work compared to the conventional baseline approaches 
in the form of reduced latency (74 percent), increased 
throughput (61 percent) as well as coverage reliability 
and UAV power consumption. Incorporation of PPO-based 
DRL agent allows real time decentralized decision-making 
in UAV swarms, where the decisions change dynamically 
according to network demands and other environmental 
conditions. Such an endeavor adds to the comprehensive-
ness of looking at the problem base and integrating opti-
mization of communications, computation, and mobility 
in a converged manner between concentrating on AI, 
edge computing, and UAV-based disaster networks.

Future Work

As part of the next phase of improvement of the robust-
ness and the possibility of theorem scalability, the fol-
lowing extensions are planned:

• Connection to satellite backhaul systems (e.g. LEO or UHF 
links) to further coverage to distant or blocked areas.
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