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Abstract

Wireless ad hoc network (WANETs) has been a key enabler in realizing fast and infrastruc-
ture-independent communications requirements in situations where lives of people have to 
depend on mission-critical operations, inclusive of disaster recovery, military coordination 
as well as remote environmental monitoring. But the same dynamic and decentralized 
structure of these networks makes it extremely difficult to realize scalability, as well as, 
adaptation especially in high mobility environments and changing node density, and vary-
ing wireless connection quality. INC can be associated with degraded performance with 
historical routing protocols in terms of packet loss, latency, and control overhead espe-
cially in such conditions. In order to overcome such drawbacks, this paper has suggested 
a new hybrid bio-inspired routing protocol which combines the locally adaptive behav-
ior characteristic of the Ant Colony Optimization (ACO) and the globally convergent effi-
ciency of the Particle Swarm Optimization (PSO). The hybrid structure has been designed 
to provide a dynamic balance of exploration and exploitation which allows to perform 
high quality route exploration and path regeneration in highly changing network topolo-
gies. Largescale simulations in different conditions with research variability in terms of 
node mobility, scale and density- prove that the presented algorithm is more robust than 
standard bio-inspired protocol and standalone bio-inspired protocols. Its effectiveness in 
scalable and adaptive routing is confirmed by its achieved large improvements to packet 
delivery ratio, end-to-end delay and routing overhead. The primary value of the paper is 
a synergistic hybridization approach, whereby different, but complementary, bio-inspired 
heuristics are combined into a single routing paradigm. The development offers an encour-
aging chance to future-generation WANETs with abilities of accommodating the perfor-
mance requirements of new wireless applications, especially those frameworks that need 
stability and real-time flexibility.

Author’s e-mail: cjsksag@gmail.com, abostani@auk.edu.kw, kamalaveni2210@gmail.com, 
dineshkumard@stjosephs.ac.in, n.shavkatov@tsue.uz, sathishmsc.vlp@gmail.com

Author’s Orcid id: 0000-0003-4973-2352, 0000-0002-7922-9857, 0009-0004-9712-9253, 
0000-0002-1451-6054, 0000-0003-1305-2507, 0000-0002-7643-4791

How to cite this article: Santhosh Kumar C., et al., Hybrid Bio-Inspired Routing Algorithms 
for Scalable and Adaptive Wireless Ad Hoc Networks, National Journal of Antennas and 
Propagation, Vol. 7, No. 1, 2025 (pp. 280-289).

KEYWORDS:

Bio-inspired routing 
Wireless ad hoc networks 
Scalability 
Adaptability 
Ant colony optimization 
Particle swarm optimization 

ARTICLE HISTORY:

Received 11-01-2024
Revised 08-03-2024
Accepted 22-04-2025

DOI:
https://doi.org/10.31838/NJAP/07.01.31

mailto:cjsksag@gmail.com
mailto:abostani@auk.edu.kw
mailto:kamalaveni2210@gmail.com
mailto:dineshkumard@stjosephs.ac.in
mailto:n.shavkatov@tsue.uz
mailto:sathishmsc.vlp@gmail.com
https://orcid.org/0000-0003-4973-2352
https://orcid.org/0000-0002-7922-9857
https://orcid.org/0009-0004-9712-9253
https://orcid.org/0000-0002-1451-6054
https://orcid.org/0000-0003-1305-2507
https://orcid.org/0000-0002-7643-4791


Santhosh Kumar C et al.  
Hybrid Bio-Inspired Routing Algorithms for Scalable and Adaptive Wireless Ad Hoc Networks 

281National Journal of Antennas and Propagation, ISSN 2582-2659

bottleneck and the adaptability of the current protocols 
by a synergistic hybridization strategy.

Literature Review

As an exciting prospect to the problem of scalability, 
adaptability and energy efficiency of wireless ad hoc 
networks, bio-inspired routing has come up. Among the 
most popular approaches is the so-called Ant Colony 
Optimization (ACO) that was proposed by Dorigo et 
al., and which capitalizes on the use of pheromone- 
mediated indirect communication so as to enable dis-
tributed and adaptive route finding [3, 6]. ACO protocols 
have proved flexibility in dynamic topologies; they are 
usually plagued by high control overhead in large-scale 
implementations thus lacking scalability [20].

Proposed by Kennedy and Eberhart [7, 23], Particle 
Swarm Optimization (PSO) is a variation of swarm and it 
mimics social behavior of particles, and has been imple-
mented to achieve routing in wireless networks. PSO is 
powerful global optimization due to coordinated learn-
ing and the typical implementations have slowness of 
the convergence and less responsive to the dynamically 
changing topologies. Gunes et al. suggested ARA pro-
tocol that swarm intelligence algorithms using a swarm 
intelligence shows high efficiency in the condition of the 
intermediate mobility of swarms, but they emphasize 
the convergence latency present in extreme mobility 
conditions [8, 22].

Hybrid bio-inspired algorithms have been suggested in 
order to overcome the single drawbacks of ACO and PSO. 
As an example, Li et al. proposed a hybrid ACO-PSO rout-
ing scheme, which depicted the integration of local and 
global optimization advantages that led to better per-
formance of convergence [9]. But their method demon-
strated lowered flexibility in those cases where topology 
alters a lot. Recently Sharma et al. adapted multi-ob-
jective ACO routing protocol to VANETs with improved 
delivery ratios, at a high computational cost [10, 25]. In 
the same breadth, Singh et al. implemented an adaptive 
PSO-based routing algorithm which promoted scalability 
but not dynamism in the event of a dynamic link failure 
[11, 21].

Nonetheless, these breakthroughs suffer a serious 
research limitation; the majority of current plans max-
imize scalability at the cost of adaptability and vice 
versa [24]. The problem with this trade-off is especially 
critical in heterogeneous and highly mobile networks, 
where reliability and efficiency requires a simultaneous 
optimization. The proposed hybrid ACO-PSO algorithm 

Introduction

Wireless ad hoc networks (WANETs) have become an 
industry staple in those application areas where there 
is no or is not desirable some sort of fixed infrastruc-
ture. They are non-centralized and hence can be set up 
quickly and be self-organizing, being ideal in use in emer-
gency response, environmental monitoring and by the 
military to establish communications. Yet the very com-
plex nature of dynamic topology, scarcity of resources, 
and uncertain wireless area conditions demand not just 
scalable, but also adaptive routing protocols.

Traditional routing protocols e.g. Ad hoc On-Demand 
Distance Vector (AODV) and Dynamic Source Routing 
(DSR) tend to be unable to sustain performance when 
the network size and mobility are high. Bio-inspired algo-
rithm, which is inspired by natural occurrences such as 
the ant foraging process and bird flocking, have proved 
to be promising in combating some of these shortcom-
ings, hence providing a distributed, adaptive, as well as 
fault tolerant solution. Ant Colony Optimization (ACO) 
program uses pheromone-based path selection and 
Particle Swarm Optimization (PSO) uses collective intel-
ligence during the optimization of solutions. Although 
individually each of the approaches has its advantages, 
there are drawbacks to both: ACO can experience slow 
convergence and high overhead in the large networks, 
but PSO may not be able to match the fine-grained con-
trol of adaptability that is so necessary in very dynamic 
conditions.

The paper suggests a bio-inspired routing algorithm that 
is a hybrid between path exploration capabilities of ACO 
and global optimization features of PSO in an attempt 
to provide a scalable and adaptive WANET routing algo-
rithm. The greatest goal is to surmount the scalability 

Fig. 1: Block diagram of the proposed hybrid bio-
inspired routing system.
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overcomes this drawback by combining the quick reac-
tion to local effects of ACO and the global path optimiza-
tion of PSO, and so provide a tradeoff in responsiveness 
and stability with a wide range of topologies.

Proposed Methodology

Hybrid ACO-PSO Routing Framework

This is the prospectus of a hybrid routing protocol that 
uses adaptive learning of Ant Colony Optimization (ACO) 
and worldwide search optimization capability of Particle 
Swarm Optimization (PSO) to establish efficient and reli-
able routing with wireless ad hoc networks. The system 
combines the real-time path optimization with scalabil-
ity to sustain mobility, in response to the need of both 
flexibility and efficiency of networks.

Within this context, the nodes share packets containing 
swarm-inspired control, that is, they include:

• Pheromone on the local reinforcement (ACO),
• Parameters of heuristic like residual energy and hop 

count,
• Velocity and position update vectors (PSO) which is 

used to learn the global paths.

ACO can be used to gain short-term flexibility by reinforc-
ing successful routes and PSO also controls the search 
to move towards global optimum paths based on best-
known routes of each node in history and neighbors.

Table 1: Comparative Analysis of Existing and Proposed Bio-Inspired Routing Systems.

Author/Year Approach/
Technology

Dataset/
Experiment

Results  
(Key Metrics)

Limitations of Existing 
System

Proposed System 
Improvements

Dorigo et al., 
2004 [3]

ACO Simulated WANET Good adaptability, 
sub-optimal 
overhead

High control overhead 
in large networks

Hybridization to reduce 
control traffic

Kennedy & 
Eberhart, 
1995 [7]

PSO Simulated 
networks

Fast convergence, 
scalable 
performance

Lacks adaptability to 
dynamic topologies

Combine with ACO for 
responsive routing

Li et al., 2010 
[9]

Hybrid ACO-PSO Simulated MANET Improved 
convergence over 
standalone methods

Limited performance 
under high mobility

Adaptive hybrid routing 
with mobility-aware 
tuning

Sharma et al., 
2019 [10]

Multi-objective 
ACO

VANET simulations High packet delivery 
ratio

Computationally 
intensive for real-time 
deployment

Lightweight hybrid 
approach with dynamic 
decision metrics

Singh et al., 
2021 [11]

Adaptive PSO Large-scale 
WANET

Good scalability, 
reduced route 
computation latency

Slower response to 
rapid topology changes

Real-time adaptation 
via hybrid optimization 
layer

Proposed 
System

Hybrid ACO-PSO 
(Enhanced)

Simulated WANET 
(multi-scale, 
mobility)

High delivery ratio, 
low delay, minimal 
overhead

N/A N/A

Fig. 2: Architecture of the Hybrid ACO-PSO  
Routing System.

In figure 2, there is a superimposed diagram which indi-
cates ACO pheromone update, PSO position/velocity 
vectors, control packet broadcast and decision logic 
flow at each node.

Antenna Modeling for Routing Integration
In order to determine how the behavior of antennas affects 
routing decisions, the nodes will be implemented using an 
omnidirectional antenna at 2.4 GHz ISM band, a radiating 
2 dBi gain and a complete 360 coverage. The alternative 
simulation set up would include patch antennas of 6 dBi 
gain and 60 beam-width to assess the directionality.
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• vij(t): PSO-based velocity indicator
• gij(t): directional antenna gain toward neighbor
• α,β,γ,δ: tuning weights

Adaptive Path Selection

The proposed algorithm, hybrid ACO-PSO algorithm in 
routing, incorporates an adaptive path selection through 
a dynamism and heterogeneity in wireless ad hoc envi-
ronments. This mechanism is dynamic, which adjusts the 
effects of Ant Colony Optimization (ACO) and Particle 
Swarm Optimization (PSO) viz another followed by net-
work parameters like node mobility, density, and past 
network history of packet delivery.

On ultra-high mobility contexts, the algorithm increases 
the value of ACO part so that the local adaptability and 
reactiveness are maximized, and the exploration of 
the routes gets done via the pheromone-driven explo-
ration about rapid routes correction. Conversely, the 
algorithm weighs more to the PSO aspect in enjoyably 
stable topologies of a very high node density that has 
encouraged global convergence and scalability by com-
parison to velocity-based position updates of the parti-
cles within the solution space.

The weighting can be adjusted through a context-sensi-
tive behaviour that re-computes the ACO/PSO balancing 
in its every routing cycle. Such an approach guarantees 
the robustness in arbitrary topology and efficiency in 
higher scale networks.

This figure 3 demonstrates convergence trend of path 
scoring in ACO, PSO and proposed Hybrid ACO-PSO 
method. With repeated runs the hybrid method con-
verges within a range of fewer failures and at a quicker 
rate in meeting the optimal path costs than when 
using standalone ACO or PSO strategies. This depicts 
a better level of consistency, a reduced variance and 
a better level of efficiency when it comes to route 
optimization.

Mathematical Modeling

The hybrid ACO-PSO routing algorithm suggested in 
this paper calculates the best next-hop node in proba-
bilistic resolution model which incorporates three main 
concepts:

• Pheromone intensity τij(t): Taking as input the ACO, it 
means the value of past routes

• Heuristic desirability ηij(t): Quantifies such factors as 
inverse hop count, or signal strength.

Selection of next hops in the routing algorithm is given 
by the routing metric, but now this metric also supports 
weighting the links in association with the transmis-
sion direction antenna gain, such that a node prefers 
to upper hop a neighbor node at the end of a link that 
is situated in the direction of highest gain. Such inte-
gration can assist beam-aware path creation, which is 
absolutely vital in the upcoming world of mmWave and 
directional melodic mesh networks.

Table 2 is a comparison of antenna models to be used in 
simulation; an omnidirectional antenna is dipole type, 
and a microstrip patch directional antenna. The omni 
directional antenna has a 360 degree coverage but with 
moderate gain where directional antenna has a beam of 
60 degree coverage but they have high gain. The two 
work on a 2.4 GHz with linear polarization. Such is the 
setting to assess the effect of the antenna directivity on 
the routing dynamics and stability of links as proposed 
in the hybrid ACO-PSO algorithm.

Control Packet Structure and Routing Logic
Hybrid pheromone table Hybrid pheromone table A 
node shall then have a hybrid pheromone table and it 
shall be periodically updated based on the received con-
trol packets. The format of the packet is the following:

• Node: ID
• Hop count
• Left-over energy
• ACO level Pheromone
• Velocity vector (PSO)
• The directional cases antenna alignment metric

The procedure used regarding routing decisions is refer-
ring to a compound score function:

 Scoreij(t) = [τij(t)]
α⋅[ηij(t)]

β⋅[vij(t)]
γ⋅[gij(t)]

δ

Where:
• τij(t): pheromone level
• ηij(t): heuristic desirability

Table 2: Antenna Specifications for Routing Simulation.

Parameter Omnidirectional 
Antenna

Directional 
Patch Antenna

Gain (dBi) 2 6

Beamwidth (°) 360 60

Operating Frequency 2.4 GHz 2.4 GHz

Polarization Linear Linear

Antenna Type Dipole-like 
(monopole)

Microstrip 
patch
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Algorithm 1: Hybrid ACO-PSO Adaptive Routing

Input: 
• Network Graph G(V,E)G(V, E)G(V,E)
• Node parameters: pheromone table τ\tauτ, velocity vector vvv
• Adaptive weighting factor λ(t)∈[0,1]\lambda(t) \in [0, 1]λ(t)∈[0,1] based on mobility, density
• PSO constants: c1,c2c_1, c_2c1 ,c2 ; ACO parameters: α,β\alpha, \betaα,β

Output:
• Optimal routing path P*P^*P*

1: Initialize pheromone levels τij and velocity vectors vij for all node pairs (i, j)
2: Set initial positions for particles (paths) using random or known heuristic
3: for each iteration t do
4:   for each node i do
5:     Evaluate local metrics: node degree di, link stability li
6:     Compute adaptive weight λ(t) = f(di, li, node_speed)
7:     for each neighbor j ∈ Ni do
8:       Compute ACO probability component:
9:         Aij = [τij]^α * [ηij]^β
10:     Compute PSO velocity update:
11:       vij(t+1) = vij(t) + c1 * rand() * (pBest - sij(t)) + c2 * rand() * (gBest - sij(t))
12:     Compute combined score:
13:       Scoreij = λ(t) * Aij + (1 - λ(t)) * vij(t+1)
14:    end for
15:   Select next hop j* = argmax_j(Scoreij)
16:   Update path and pheromone table τ
17:   end for
18: Evaluate global path cost and update gBest
19: end for
20: Return final optimized routing path P*

Fig. 3: Convergence Graph of Hybrid Score Function.

• Velocity influence vij(t): By definition using PSO this 
is introduced, to describe momentum toward optimal 
solutions globally.

This hybridization allows this protocol to average 
local adaptability (ACO) and global convergence (PSO) 
in dynamic environment or large-scale networks 
environments.

Path Selection Probability
And suppose Pij(t) to be the probability that node i 
chooses a neighbour j at time t. The weight product of 
heuristic, pheromone and velocity components is used 
to compute this probability:

 ( )
i

ij ij ij
ij

ik ik ikk N

 [ (t)] [ (t)] [v (t)]  
P t  

[ (t)] [ (t)] [v (t)]  

α β γ

α β γ

∈

τ ⋅ η ⋅
=

τ ⋅ η ⋅∑
 (1)

Where:
• Ni : Set of neighbors of node i
• α,β,γ: Parameters which regulate the effect of each of 

the terms

This is a probabilistic mechanism, which will guarantee 
that:

• Trails that have a lot pheromone (success in the past) 
become strengthened, 

• η prefers low-cost, or low-delay links, 
• The modern velocity patterns speed up convergence, 

through PSO logic.
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Experimental Setup

Simulation Environment

All the simulations were carried out with NS-3 network 
simulator that was set in such a way that it represented 
the simulation of wireless ad hoc networks with vary-
ing scale and mobility. The number of nodes was var-
ied in the quantity of 50-500, and the movement of the 
nodes in the simulation was controlled by the Random 
Waypoint and Gauss Markov frameworks indicating 
pedestrian movements and vehicle flow. The genera-
tion of traffic was a Constant Bit Rate (CBR) profile and 
nodes apply the IEEE 802.11 DCF MAC protocol with 250 
meter ability to communicate.

A thorough modeling of the physical-layer was used to 
provide realistic behavior to signal in the simulation 
environment. A two-slope path loss model represent-
ing the wireless propagation was used to differentiate 
between attenuation in the near-field and in the far-
field. The path-loss exponent was 2.4 when the Line-
of-Sight (LOS) conditions were considered and 3.5 was 
applied to Non-Line-of-Sight (NLOS) circumstances 
because of extra shadowing and multipath loss.

• Rayleigh as well as Rician fading channels were 
simulated:

• Rayleigh fading: dense urban or indoors situation 
where there is no LOS path.

• The Rician fading was utilized to represent the high-
way or semi-urban scenario with high LOS portion 
(K-factor of Rician fading of 3 to 9).

• Also, positions of antennas were different:
• Omnidirectional antennas radiated equally in all direc-

tions having decent gain.
• Directional patch antennas focused power into a 60 

beamwidth which affected Received Signal Strength 
(RSS) and affected neighbor discovery and link stabil-
ity in the case of mobility.

Figure 4 illustrates the comparison of RSS of receiving 
antenna subject to different distances between omnidi-
rectional and directional antenna under Rayleigh fading 
and Rician fading. The directional antennas always mea-
sure high RSS because they have a gain advantage over 
point-to-multipoint antennas, whereas Rayleigh fading 
causes more signal fluctuations on the signal than Rician 
fading.

Parameter Configuration

Parameters such as transmission range (250 m), node 
speed (0- 20 m/s) and size of data packet (512 bytes) 

Pheromone Update Rule (ACO Component)
After this route selection and evaluation is completed, 
pheromone levels are adjusted to indicate its relative 
quality:

 τij(t + 1) = (1 − ρ)⋅τij(t)+Δτij(t) (2)

Where:
• ρ: Pheromone evaporation factor (0<ρ<10)
• Δτij(t): Pheromone deposit, typically inversely related 

to path cost (e.g., delay, energy)

Velocity Update Rule (PSO Component)
The drift of PSO is simulated by the velocity update of 
the particles (or of a path candidate):

 vij(t + 1) = w⋅vij(t) + c1⋅r1⋅(pBestij − sij(t))  
  + c2⋅r2⋅(gBestij − sij(t)) 

(3)

Where:
• w: Factor of inertia which governs the retention of the 

past velocity
• c1,c2: Coefficients of cognitive and social acceleration
• r1,r2∼U(0,1): Random weights
• pBestij, gBestij : The local and global best positions
• sij(t): Situation of the solution at the time t

This element of PSO assists the path exploration depend-
ing on the previously optimal decisions.

Combined Optimization Objective
The global objective in the hybrid routing model is that 
a path P* ∈ P(set of all feasible paths) should be identi-
fied that satisfies minimization of composite cost that 
depends on energy use, delay and reliability:

 1 2 3P P
P*=argmin( EP+ DP+ (1-RP))ω ω ω

∈
⋅ ⋅ ⋅

 
(4)

Where:
• EP: Energy that is used along path P
• DP: Delay of the transmission and queues of the  

total P
• RP: Total reliability score (e.g. on the basis of the ratio 

of successful delivery)
• ω1,ω2,ω3: the weights that are calculated with respect 

to application-specific priorities

Such a cost function makes sure the chosen route has 
the right trade off between energy efficiency, low 
delay, and high delivery reliability as the three require-
ments which are enormous in scalable and changing ad 
hoc networks.
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Fig. 4: RSS vs. Distance for Different Antenna Types 
and Fading Models

were also the key ones. It used optimal performance 
tuning of the weights of the hybrid algorithm (α,β,γα,β,γ) 
through grid search. The parameters of Simulation and 
hardware configuration are illustrated in Table 3.

Experimental Scenarios

In order to have a holistic analysis of the performance of 
the proposed hybrid ACO-PSO routing framework, three 
different experimental situations were structured to 
mimic different dynamics of a network:

1. Static Topology: In the simulation, all the nodes are 
stationary. This picture is meant to assess the base-
line performance of this protocol in a stable and 
interference limited environment and the protocols 
efficiency and convergence behaviour in situation of 
low mobility.

2. Moderate Mobility: Nodes are traveling with average 
speed of 2-5 m/s, and this represents movement of 

Table 3: Simulation and hardware configuration parameters.

Parameter Value/Description

Simulation Tools MATLAB (channel modeling), TensorFlow (DL training)

Fading Models Rayleigh, Rician (K-factor: 3–9)

Doppler Spread Range 5 Hz – 200 Hz

SNR Range 0 dB to 30 dB

Modulation Schemes BPSK, QPSK, 16-QAM

Training Samples 50,000 synthetic + 10,000 real OTA captures

Neural Network Architecture Hybrid CNN-RNN with 3 conv layers, 1 LSTM

Optimizer/Learning Rate Adam/0.001

Epochs/Batch Size 50/128

Hardware Platform (Training) Intel i7 CPU, 32GB RAM, NVIDIA RTX 3080 GPU

Hardware-in-the-Loop Testing USRP B210 SDR, GNU Radio-based signal emulator

Frame Lengths Evaluated 64, 128, 256, 512, 1024 samples

vehicular or pedestrian traffic. This situation estimates 
the routing algorithms flexibility with relatively small 
topological alterations and the capacities of the routes 
to be stable in the case of sporadic link failures.

3. Large Scale Mobility and Rapid Partitioning with 
Networks: The movement of the nodes is quite fast 
(8 to 15 m/s) and the direction changes randomly. 
Sudden loss of connection and blocks in the routes 
are probable. This hard situation puts into question 
the strength and sensitivity of the online adapta-
tion mechanism of the protocol under the extreme 
mobility.

Simulations of each scenario took 1000 seconds and the 
averaging of the results was done in 10 independent 
trials to achieve statistical significance. Some of the 
performance measures that have been logged are the 
packet delivery ratio (PDR), end-to-end delay, energy 
consumption and routing overhead.

Figure 5 shows the simulation testbed architecture 
which shows logical data and control flow through the 
mobility model, traffic generator, hybrid routing module 
(ACO + PSO), performance monitor, and the final result 
analysis stage. Such modular design contributes to the 
evaluation of the performances over a variety of mobil-
ity patterns and traffic scenarios in terms of dynamic 
routing measures.

Results and Discussion

To confirm the introduction of the proposed hybrid ACO-
PSO routing protocol, experiments were carried out on 
a static topology and dynamic topology with several 
scenarios of a different size network. These findings 



Santhosh Kumar C et al.  
Hybrid Bio-Inspired Routing Algorithms for Scalable and Adaptive Wireless Ad Hoc Networks 

287National Journal of Antennas and Propagation, ISSN 2582-2659

The difference between routing overhead with an 
increase in network nodes is represented in figure 8. 
The hybrid ACO-PSO model outperforms the ACO and 
PSO model in terms of overhead reduction since all of 
them present a decreasing trend as the network size 
increases indicating that the former is more scalable 
than the latter two. Although the overhead of all proto-
cols grows with the size of a network, the hybrid model 
curbs the extreme control traffic using adaptive update 
suppression.

Trade-Offs and Computational Impact

Compared to the pure algorithm, a hybrid algorithm 
adds a little bump in computational intensity because of 
the dual-phase optimization, but this is compensated by 
a distributed parsing and variable updating frequency. 
The additional complexity does not cause substantial 
change in runtime of NS-3 based simulations on moder-
ate hardware. Table 4 provide the Comparison of aver-
age computation time per packet (ms).

show steady enhancement of results compared to that 
of standalone ACO and PSO protocols in packet deliv-
ery ratio (PDR), end-to-end delay (E2E) and routing 
overhead.

The major findings entail:

• In static topologies hybrid algorithm performed a PDR 
up to 98% p.a., opposed to 90% (ACO) and 88% (PSO).

• At high mobility, hybrid PDR stood at 92 percent beat-
ing ACO (80 percent) and PSO (85 percent).

• This minimized end-to-end delay by 15-25 percent in 
all scenarios.

• Routing overheads were also reduced because of 
dynamic pheromone as well as velocity balancing par-
ticularly in the high-density networks.

This Figure 6 demonstrates the packet delivery ratio 
(PDR) of the introduced hybrid ACO-PSO routing algo-
rithm with variating sizes of the network (50-500 nodes) 
and varying mobility settings. The algorithm achieves 
good delivery performance with delivery efficiency 
being over 96 percent in the static topology and its per-
formance gracefully degrades with moderate (less than 
10 percent PDR loss) and high mobility (less than 20 per-
cent PDR loss). This confirms the properties of the pro-
tocol in terms of scalability and robustness with regard 
to changes in the dynamics of networks.

In figure 7, the comparison of mean end-to-end delay 
of ACO, PSO and hybrid ACO-PSO algorithms, indicates 
variation in node speed. The hybrid approach achieves 
the lowest delay at any degree of mobility, which 
reflects the stability on its capabilities in a very dynamic 
environment.

Mobility Model (RWP, 
Gauss-Markov)    

Traffic Generator 
(CBR, Poisson Load)    

Hybrid Routing 
Module (ACO+PSO)      

Performance Monitor     
(PDR, Delay, 

Overhead)    

Result Analysis & 
Charts

 

Fig. 5: Block diagram of simulation testbed 
architecture.

Fig. 6: PDR vs. Node Count under Various  
Mobility Levels.

Fig. 7: End-to-End Delay vs. Node Speed.
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Such results explain the need of beam-aware rout-
ing procedures in networks with directional anten-
nas. Other performance improvements might also be 
made by adding real-time orientation feedback (e.g. 
through IMU sensors or beam tracking) to work in 
dynamic environments like UAV swarms or vehicular 
networks.

Figure 9 is a plot of two axes of angular offset ver-
sus antenna gain (left Y-axis) and bit error rate, (right 
Y-axis). The gain is attenuated in a cosine manner 
whereas the BER increases exponentially beyond beam-
width limit.

Conclusion and Future Work

In the present paper we introduce a brand-new hybrid 
bio-inspired routing framework that incorporates 
the local adaptive nature of Ant Colony Optimization 
(ACO) with the global convergence of Particle Swarm 
Optimization (PSO) to solve the dual challenges of scal-
ability and adaptability, in wireless ad hoc networks. 
Adding directional awareness antenna and using swarm-
based decision making solves this issue since exploring 
and exploiting are balanced in real-time, which guar-
antees good performance under different mobility and 
network density situations.

Extensive simulation results show that hybrid ACO-PSO 
protocol effectively achieves greater level of packet 
delivery ratio and end to end delay, routing overhead, 
and convergence stability when compared to traditional 
ACO- and PSO-based strategies. In addition, the design 
of the antenna gain modeling as well as the metrics of 
beam alignment further contribute to the application of 
the protocol to propagation-sensitive and directionally 
limited wireless networks.

Fig. 8: Routing Overhead vs. Network Size.

Impact of Directionality and Beam Alignment

Directional antennas provide more gain and better spa-
tial reuse with the disadvantage being sensitivity of 
angular misalignment between the transmitting and 
receiving nodes. In order to analyze this impact we 
added controlled angular offsets between beams center 
of transmitting nodes and where they targeted receiv-
ers. This simulation was based on actual real time sit-
uation where the mobile nodes could rotate or even 
drift out of alignment within the process of packet 
forwarding.

Figure 9 shows that when the offset angle is greater 
than the half-power beamwidth of the antenna (usually 
about 30 degrees in patch antennas) then the antenna 
gain starts falling off rapidly. Sensibly above this point, 
the signal strength attenuates at an alarming rate caus-
ing a quantifiable rise in Bit Error Rate (BER).

This directly impacts on packet forwarding choices and 
link reliability in systems using beam-sensitivity in rout-
ing. Robust behavior of the hybrid ACO-PSO algorithm 
with directional gain, as a component of link-quality, 
was observed to ~45 misalignment, 0 Nonetheless, when 
angular offset was above 60 it was performing worse 
because of lower RSS and more retransmissions.

Table 4: Comparison of Average Computation Time per 
Packet (ms).

Algorithm Static 
Topology

High Mobility 500 Nodes

ACO 0.42 ms 0.57 ms 0.71 ms

PSO 0.39 ms 0.49 ms 0.68 ms

Hybrid 
ACO-PSO

0.53 ms 0.59 ms 0.74 ms

Fig. 9: Impact of Beam Misalignment on Link Gain 
and BER.
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Future Work

In order to make this research more applicable and influ-
ential, the following directions can be offered:

• Real-World Validation: The use of a software-de-
fined radio (SDR) testbed (e.g. USRP or GNU Radio) 
to compare the actual-time behaviour of the pro-
tocol with more practical environments of the RF 
channel.

• Energy-Aware Optimization: An option of joining the 
power control and energy harvesting actions towards 
the aim of scale-out node life in the sensor and IoT 
application context.

• Cross-Layer Adaptation: Advance feedback at the 
MAC-layer and physical layer beam tracking to enable 
smooth routing in directional mesh networks and 
when mmWave is used.

• Heterogeneous Networks: Framing extension to facil-
itate vehicular ad-hoc networks (VANETs), swarms 
of UAVs, and clusters of IoT edges custom multi-tier 
demands and mobility that is non-uniform.

This hybrid routing framework lays the groundwork of 
future antenna-aware, scalable communication proto-
cols suitable to the new environment of intelligent and 
automated wireless systems.
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