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Abstract

The development of intelligent healthcare systems has brought a fresh approach to 
patient-centric care which prioritizes continuous monitoring, early diagnosis and personal 
treatment. The Wireless Sensor Network (WSNs) has risen to become central to this change 
and has empowered the real time combination of crucial physiological metrics includ-
ing heart rate, oxygen saturation, body temperature, and electrocardiogram readings. 
Nevertheless, using WSNs in healthcare systems hides tremendous challenges and these 
challenges are mainly lie in the energy usage, data reliability, and real time response. 
Sensor nodes mostly run on low-power supply and transmitting data continuously to ensure 
continuous monitoring can severely reduce network life span, hence interfere with the 
sustainability of the system. To address such challenges, this study suggests a low-energy 
consumption WSN coupled with the use of edge-based predictive analytics to improve the 
life expectancy premise of health monitoring systems and also to make them smarter. 
The model in question follows the hierarchical, cluster based routing protocol whereby the 
cluster heads are dynamically chosen depending on the amount of energy with respect to 
the point of origin in an attempt to reduce the communication overhead. Moreover, smart 
data collecting and lightweight compression strategies are used throughout the level of 
cluster heads in order to minimize irrelevant transmissions. At the edge level, an LSTM 
neural network is integrated to execute real-time anomaly detection, making sure that 
aberrations in essential health aspects are detected early enough without relying much on 
cloud resources. Real-world physiological data and exhaustive simulations with NS-3 and 
TensorFlow prove network lifetime to have been improved by 38.6 percent and prediction 
accuracy by 27.4 percent over traditional baseline systems. Power-efficient communica-
tion and smart edge analytics are scalable and feasible solutions to the next-generation 
healthcare systems designed to provide efficient medical insights at appropriate time or 
even crisis. The work represents an important asset in terms of facilitating sustainable and 
intelligent remote health monitoring of the older population and chronic disease cases, as 
well as emergency occupations.
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of the systems and the scalability of the systems is also 
a key research question in the deployment of smart 
healthcare WSNs.

Motivation and Objectives

In general, to overcome the above shortfalls, whole-
sale solutions that consume minimum energy as well as 
ensuring the integrity of real-time data and the profi-
ciency of the analysis are urgently needed. The inclu-
sion of artificial intelligence (AI), especially lightweight 
and dynamic models on the network periphery is a via-
ble opportunity with a strong potential to create the 
required balance. It can be possible to detect abnormal 
physiological patterns early by using predictive analyt-
ics, therefore, requiring the raw data transmission all 
the time, and targeting the selective, event-based com-
munication. At the same time, energy-aware clustering 
and data aggregation with hierarchical network topology 
may reduce communication overhead, hence network 
lifetime.

Also, the nature of WSN in healthcare facilities which are 
becoming worn or implanted on the human body intro-
duces new wireless communication issues due to the 
body-centric nature of propagation effects. Transmission 
can be hampered by signal detuning, near-field losses, as 
well as multipath fading caused by tissues and, hence, 
its energy efficiency. New developments in portable 
antenna technologies, like microstrip patch and loop 
antennas on textile or flexible substrates show potential 
solutions. The antennas are characterized by low profile 
and are optimized to be used in most widely used ISM 
band 2.4 GHz that is used in communicating Zigbee or 
Bluetooth Low Energy (BLE). Further, designs that guar-
antee the compliance of the Specific Absorption Rate 
(SAR) and those that have linear polarization aides in the 
maintenance of safety of the user, as well as, restrict 
the cross-talk in congested monitored areas. Therefore, 
effective incorporation of the body-centric antenna 
design and energy-conscious WSN protocols is necessary 
in achieving the next-generation healthcare monitoring 
systems that are strong and reliable.

Research Contributions

In our study we introduce an energy-efficient and intel-
ligent design for smart healthcare systems using WSN 
where we design a smart framework that efficiently 
combines the communication level optimization with 
edge deployable predictive analytics and body centric 
antenna design. Figure 1 defines the general structure 
of the system work, which involves three parts such as 

Introduction

Background

The healthcare sector has been changing dramatically 
over the past few years, replacing manual efforts with 
intelligent and data-based solutions that can provide 
personalized and uninterrupted care. The spread of the 
Internet of Things (IoT) technologies and, in specific, 
Wireless Sensors Networks (WSNs), has contributed to 
this evolution, becoming the basic elements of mod-
ern smart healthcare infrastructures. WSNs are spatially 
distributed sensor nodes that are wireless communicat-
ing, processing, and sensing nodes. These nodes may be 
integrated in wearable units, implantable biomedical 
sensors or environmental monitoring units and capable 
of monitoring vital physiologic parameters continuously 
like heart rate, body temperature, electrocardiograph 
(ECG), oxygen saturation (SpO 2) and blood pressure.

The introduction of WSN to the healthcare system facili-
tates the paradigm shift to the proactive health manage-
ment. There is no need to invest only in episodic clinical 
visits since health monitoring can be applied in real time 
at the comfort of the homes by the patients which can 
facilitate early fault detection, management of chronic 
diseases, distant elderly, and post-surgical follow-ups. 
Moreover, the synergy of WSNs and cloud/edge com-
puting allows performing data processing, remote diag-
nosis, and medical intervention in a seamless manner, 
which lowers the readmission rates and increases the 
outcomes in healthcare delivery.

Problem Statement

Albeit all of its benefits, the basic limitations of WSN-
based healthcare systems are dictated by the scarcity 
of energy sources provided by the sensor nodes. The 
majority of nodes are powered by batteries and gener-
ally these are used when battery replacement is either 
a nuisance or impossible in a given environment, such as 
in medical implants or long-range portable gadgets. The 
constant power consumption required by continuous 
monitoring and regular transmission of the data needed 
in real-time analysis causes a quick drainage of battery, 
severely restricting the potential working period of the 
network. In addition, conventional WSN protocols are 
not optimized with the demands of high sampling rates, 
low latency requirements of healthcare applications. It 
is further compounded by scaling the system to multi-
ple patients or to expanded regions (remote and under-
served regions) where power infrastructure is scanty. 
Hence, maximizing the efficiency of energy use without 
sacrificing the accuracy of the data, the responsiveness 
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temperature. This reduces reliance on cloud computing 
operations, as well as, making these healthcare opera-
tions low-latency and responsive.

The models of wearable antennas specific to body-centric 
propagation, as well as their data rates, were validated 
by simulated communication and SAR efficiency in a real 
scenario of an indoor medical setting, which is another 
of the contributions of this work (Figure 2). Such models 
are based on microstrip patch antennas customized to be 
used at frequencies used in on-body communication (with 
regard to polarization, tissue absorption and even prop-
agation) constraints. Table 1 presents details about suit-
able parameters of the specific antennas design applied 
in wearable sensor nodes such as frequency band, gain, 
SAR compliance, and radiation efficiency, which made 
it appropriate to use in the biomob2 project during safe 
and reliable biomedical monitoring.

Paper Organization

The remainder of this paper is organized as follows:

• Section 2 reviews related work on energy-efficient 
WSNs, wearable antennas, and predictive healthcare 
systems.

• Section 3 presents the system architecture, includ-
ing sensor design, communication protocol, and edge 
inference.

• Section 4 details the LSTM-based predictive analytics 
and hybrid simulation environment.

wearable sensing, edge AI, and cloud analytics, which 
are linked together through energy-efficient communi-
cation protocols. The framework presents an energy- 
efficient hierarchical architecture which utilizes an 
hybridized clustering algorithm adapted by LEACH-TEEN. 
In this way, the cluster heads are dynamically chosen 
based on distance and residual energy related parame-
ters to reduce the amount of energy used in the trans-
mission to lengthen the Lifetime of the network.

Furthermore, to conserve more energy and maximize 
bandwidth usage a lightweight data aggregation and 
compression system at the cluster head level is used 
to minimize unnecessary and low priority messages 
without substantial loss of data. SHARCS customizes a 
health abnormality detection model by training on real-
world data through the physiological features at the 
edge layer, based on R-net and proposed deep learn-
ing frameworks such as LSTM, to detect critical health 
events in real time, including arrhythmias or a spike in 

Fig. 1: Overall System Framework Integrating 
Sensing, Communication, Edge AI, and  

Antenna Layer.
Fig. 2: Body-Centric Wireless Propagation and 

Antenna Configuration.
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Table 1: Antenna Design Parameters for Wearable Sensor Nodes.

Parameter Value Description

Antenna Type Microstrip Patch Antenna Lightweight, compact, suitable for wearables

Frequency Band 2.4 GHz ISM Supports Zigbee/BLE-based communication

Radiation Efficiency ~80% Optimized for near-body communication

Gain 2–4 dBi Sufficient for 10m intra-cluster transmission

SAR Compliance Yes (ICNIRP standard) Safe for wearable use

Polarization Linear Minimizes cross-talk in dense deployments

• Section 5 presents and discusses experimental 
results, including communication efficiency and anom-
aly detection performance.

• Section 6 discusses limitations, practical consider-
ations, and future research directions.

• Section 7 concludes the paper with key insights and 
contributions.

Related Work

In the Wireless Sensor Networks (WSNs) in smart health-
care domain, research has been done a lot on commu-
nication protocols, energy optimization, and combining 
with machine learning and edge computing. The topic 
here classifies the body of studies surrounding the topic 
into four broad areas.

Energy-Efficient Communication Protocols for WSNs 
in Healthcare

Since there is a limited power source on sensor nodes, 
energy efficiency is probably one of the most researched 
areas of WSNs. Several Medium Access Control (MAC) 
and routing protocols have been suggested to minimise 
energy consumption.

Heinzelman et al. proposed the LEACH protocol which is 
a clustering-based algorithm to minimize energy wasted 
in the WSN [1]. Subsequently, TEEN was made reactive 
to event assignments based upon thresholds [2] making 
it applicable in the monitoring of critical health param-
eters. Even though these protocols offered longevity to 
networks, they were not flexible to the changing physio-
logical data rates in healthcare.

The paper ([3]) introduced adaptive TDMA based MAC 
protocol of body sensor networks whose solution 
enhanced the synchronization but not the predictive 
data processing. Most recently, hybrid cluster-based 
mechanisms such as HEED [4] and SEP [5] have tried to 
increase scalability and balancing of residual-energies, 
yet were not tested in healthcare-oriented settings.

Machine Learning for Predictive Health Monitoring

Machine learning in predictive analytics in smart health-
care has become grandmother in the field to identify 
anomalies early on and risk estimation. As an example, 
the Support Vector Machines (SVMs) were used in the 
work by Zarei et al. [6], where classification of the ECG 

Fig. 3: Layered Architecture of Energy-Efficient 
Wireless Sensor Networks for Smart Healthcare 

Monitoring and Predictive Analytics.
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prospective system in the current paper is envisaged 
using a holistic approach: to graduate between the 
sustainability of the system and the efficacy of diagno-
sis, this system combines energy-aware WSN protocols 
with time-sensitive anomaly detection at the edge-level 
employing lightweight LSTM models.

System Architecture

Overall Framework

The suggested framework will have a hierarchical, 3-tier 
structure that allows efficient, scalable intensive, and 
smart health surveillance in a real-time. These tiers (of 
architecture) are strategically designed to adopt the role 
of supporting energy-efficient data acquisition, storage, 
and visualization with localized processing, all at rela-
tively low latencies. This framework aims at minimizing 
energy consumption per sensor and possessing flexible 
predictive analysis far ahead in the edge and a more 
detailed work on historical data in the cloud. The three 
levels i.e., Sensor Layer, Edge Layer and Cloud Layer are 
explained as follows:

Sensor Layer
The Sensor Layer consists of layer of wearable or 
implantable biosensor nodes installed on patients. 
These nodes work in gathering continuous fundamental 
physiological signals such as electrocardiograms (ECG), 
body temperature, heart rate, oxygen saturation (SpO 
2), blood pressure, and respiration rate. Minimal com-
putational resources and limited battery energy char-
acterizes the sensors, and thus energy efficiency is of 
major interest at this level. The sensor nodes use the 
lightweight communication protocols and the technique 
of duty-cycling in order to save energy. Also, physiolog-
ical relevance is given priority in data sampling to such 
an extent that a drastic change in a data (such as heart 
rate) prompts more data to be read. Raw data gathered 
by a node are sent to a neighboring cluster head or an 
edge device where they will undergo processing with 
the help of short-range wireless networks (e.g., Zigbee, 
BLE, LoRa).

signal was conducted by application of the technique 
in wearable devices. On the same note, Deep Learning 
models like CNNs and LSTMs has been demonstrated to 
achieve promising results when classifying time-series 
health data [7], [8].

Nonetheless, the majority of these models were trained 
and run in confidential settings (of the cloud), which 
adds latency to the whole system and becomes energy 
intensive, because of the fact that so much data needs 
transmitting all the time. Such works as [9] covered this 
by compressing the data in the process of transmission 
but with loss of prediction accuracy.

Edge and Fog Computing for Real-Time Analytics

In order to overcome the latency issue of cloud com-
munication, edge and fog geared architecture con-
cepts have been proposed as a solution. In [10], a fog 
computing solution to patient monitoring in a hospital 
was introduced, in which gateway-level preprocessing 
occurred. Work on lightweight models executed on edge 
nodes was done in similar systems in [11], [12], to reduce 
the use of the cloud.

However, at the expense of scale, their wide-scale 
applicability in rural or in-home settings is precluded by 
the price, and intricacy of [15] implementing fog infra-
structure in such environments. Besides, the solutions 
tend to take no account of energy limitations on the 
WSN level and tend to be unfavourably integrated with 
wearable sensor platforms.

Hybrid Approaches: Toward Joint Optimization

There are few [16] studies which have tried to co- 
optimise energy efficiency and predictive intelligence. 
The system of [13] used LEACH to implement hard-
coded SVM cardiac monitoring framework, whereas none 
of the aspects, such as dynamic node [17] clustering or 
advanced deep [18] learning methods, were addressed. 
The latest studies in [14] presented an approach of rein-
forcement learning to turn on/off sensors dynamically 
to [19] save energy but they had demanding training and 
gargantuan data requirements.

Summary and Research Gap

Table 2 summarizes key literature and their limitations.

In spite of considerable progress, however, the cur-
rent methods concentrate on energy efficiency or on 
predictive accuracy but not on both. By contrast, the 

Table 2: Comparison of Existing WSN Approaches 
for Smart Healthcare Monitoring.

Ref Methodology Focus Limitation

[1] LEACH Clustering No prediction

[6] SVM ML on ECG Cloud-only model

[10] Fog nodes Edge analytics Costly deployment

[13] LEACH + SVM Hybrid Low model accuracy
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Energy-Aware Clustering

An efficient clustering technique is an initial method 
used to prolong the lifetime of the Wireless Sensor 
Networks (WSNs) notably in healthcare monitoring due 
to the importance of constant operation processes. The 
Energy-Aware Hybrid clustering protocol in the proposed 
framework implements a hybrid clustering protocol 
achieving the best of both worlds, so to speak, in a mod-
ified LEACH (Low-Energy Adaptive Clustering Hierarchy) 
and TEEN (Threshold-sensitive Energy Efficient sensor 
network protocol) to the demands of physiological data 
transmission implementation.

The protocol uses two pivotal steps such as cluster for-
mation and data transmission, its goal being to optimize 
energy dissipation throughout the network. Cluster Heads 
(CHs) are meant to gather information on member nodes, 
carry out data aggregation and local computation oper-
ations, and send the processed data to edge gateway or 
immediately to the cloud. In order to avoid flooding the 
energy resources of individual nodes too soon, CH selec-
tion process is rested by two fundamental parameters; 
the residual energy and the distance between the base 
station (BS) and individual nodes. This dynamic approach 
will increase the likelihood of nodes that are closer to the 
BS and the ones that are at a later stage energy wise to 
be selected as CHs hence reducing the amount of trans-
mission energy required as well as the leveling out energy 
consumption throughout the network.

Edge Layer
The Edge Layer is an essential intermediate process-
ing layer in the suggested smart healthcare monitoring 
architecture, between raw data feedback in the sensor 
layer and permanent analysis in the cloud. This layer 
is based on Cluster Heads (CHs) and Edge Gateways; 
they are most often executed by embedded computing 
platforms, like Raspberry Pi and Nvidia Jetson Nano or 
ARM-based microcontrollers. These technologies carry 
out the role of processing the data in a smart and ener-
gy-efficient manner close to the origin. To begin with, 
they perform a function of data aggregation, taking data 
measurements over several sensor nodes and discarding 
any unnecessary or redundant information in the interest 
of minimized communication overheads. Secondly, they 
use data compression such as Differential Pulse Code 
Modulation (DPCM) or Huffman encoding to compress 
further the length of data packet transmitted. The most 
importantly, the edge layer incorporates anomaly detec-
tion via a light Long Short-Term Memory (LSTM) neural 
network model running locally to detect the abnormal 
physiological situation during sensor signal acquisition in 
real-time, including cardiac arrhythmias, abnormal tem-
perature swings/or oxygen desaturation. This on-device 
intelligence gives the system the ability to make real-
time decisions without the need to validate the deci-
sions in the cloud, thereby giving it the responsiveness 
and reliability. The edge layer will be central in saving 
energy, keeping latency low, and guaranteeing continu-
ous healthcare operations in practical implementations 
because the edge layer can help in offloading computa-
tion off the cloud and avoid sending it unnecessarily.

Cloud Layer
The Cloud Layer delivers all centralized services on data 
storage, long-term analysis and distributed visualiza-
tion. The system architecture is hierarchical: the cloud 
as the upper layer of the system consists of analytical 
and decision-making functionalities, to which the edge 
nodes provide processed and filtered health data, and 
also stores in the long-term the health history of indi-
vidual patients. The cloud infrastructure can be used to 
provide physicians as well as other health providers with 
real-time dashboards, trends, and predictive warnings 
through web-based applications or mobile devices. The 
cloud is also able to allow the use of advanced analytics 
and deep learning models to be used to conduct popu-
lation research, trends of diseases progression or act as 
a decision support to the clinicians. The cloud layer will 
also be integrated with information systems of hospitals 
(HIS), electronic health record (EHR), and remote con-
sultation to assist in diagnosis, planning of treatment, 
and remote consultations.

Fig. 4: Hierarchical System Architecture for Energy-
Efficient Smart Healthcare Monitoring Using Wireless 

Sensor Networks.
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Additionally, the CH roles are interchangeably defined 
across the nodes in each cluster so that a node is not 
remarkable the burden to increase the network life-
time. The input that TEEN brings is the insertion of a 
two-threshold process to regulation their frequency and 
amplitude of transmission of data on the basis of the phys-
iological relevance, between a hard threshold and a soft 
threshold. It particularly comes in handy in the medical 
setting, where the user only needs to frequently update 
the information when the vital signs vary indicatively.

Equation 1: CH Selection Probability

 

( )( ) ,
. . 1residual

i
max max

d i BSE i
P

E d
α β

 
= + −  

 

Where:

• Pi = is the probability that node i will be a Cluster 
Head

• Eresidual(i) = Residual energy of node i
• Emax = Maximum initial energy at all nodes
• d(i,BS) is the distance between node i and the base 

station
• dmax = was a upper bound on the distance of the 

 network topology
• α,β = Weighting factors, which decide the influence of 

energy and distance (e.g. α = 0.6, β = 0.4)

Such an equation will guarantee that those nodes which 
have high residual energy and a good strategic location, 
have greater potential to be chosen as CHs, thereby 
facilitating energy consumption uniformity as well as 
network scalability. Through this hybrid clustering tech-
nique, the system minimizes in-mandatory transmis-
sions, makes the optimal use of resources, and improves 
reliability of the continuous health monitoring process 
as well (Figure 5).

Wireless Communication and Antenna Configuration

The use of Wireless Sensor Networks (WSNs) in the mon-
itoring of healthcare is greatly reliant on the design and 
incorporation of the right antenna systems to ensure 
reliability and energy efficiency in the communication 
process. The proposed framework uses the sensor nodes 
with microstrip patch antennas operating at the 2.4 GHz 
ISM band that is broadly adopted by short-range wireless 
technologies, i.e. Zigbee, Bluetooth Low Energy (BLE) 
and IEEE 802.15.4. This choice of frequency allows low 
power and is suitable in high density healthcare applica-
tions in hospital wards and nursing homes.

The selection of antenna is also important in the health-
care wearable device because of body-centric propaga-
tion. RF signals are easily lost and reflected by human 
tissues and when this occurs it can greatly influence 
reliability and range of the transmission. In a bid to 
reduce these difficulties, the antennae on the sensor 
node are configured to possess a small footprint, low 
profile geometrical structure, planar arrangement, and 
minimal body interference accompanied by a high radia-
tion efficiency (=80 %) and specific absorption rate (SAR) 
meeting the ICNIRP requirements. Moreover, due to the 
stability of orientation sensitivity in wearable applica-
tions, the same polarization is maintained by utilizing 
linear polarization in order to minimize polarization mis-
match losses that may occur in wearable conditions that 
are non-static.

Multi-hop communication is also enabled using the archi-
tecture where the intermediate nodes help in send-
ing data towards the base station or edge device. In 
this regard, antenna gain optimization is an important 
parameter. Nodes acting as Cluster Heads (CHs) or relay 
nodes are equipped with antennas of slightly higher gain 
(3-4 dBi) in order to enable long distance (measured 
in meters, up to 15 meters) communication with mini-
mal power in order to reduce power consumption. On 
the contrary, clusters leaf nodes employ 2 dBi energy- 
efficient short-range (<10 meters) communication anten-
nas. Such dynamic gain-conscious deployment provides 
a trade-off between communication reliability, energy 
savings and spatial scaling.

Besides, the wireless link budget and RF propaga-
tion models used in the simulation environment have 

Fig. 5: Energy-Aware Hybrid Clustering Mechanism 
Using LEACH-TEEN Protocol for Smart  

Healthcare Monitoring.
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System Design Overview

The intended low-power, intelligent and real-time health-
care Smart Healthcare monitoring system is architected as 
a three-tier hierarchical model, wisely aimed to achieve 
the twin objectives in power of low-power and in intel-
ligence of real-time health analytics. Different layers of 
the system are specialized, with each serving reliability in 
physiological data collection, efficiency in data process-
ing and meaning to clinicians. Such a layered structure is 
especially suitable to continuous, long-term surveillance in 
both clinic- and home-based healthcare settings.

Sensing Layer
The lowest level of the system is the Sensing Layer, 
which utilizes a dense network of wearable or implants 
biosensor nodes added on individual patients. These 
nodes have biomedical sensors inside, which include 
monitoring of vital safety signals like electrocardiogram 
(ECG), blood oxygen (SpO2), skin/body temperature, 
heart rate and respiratory rate. These sensors are meant 
to operate on low power levels, by sampling physiolog-
ical signs at regular intervals and relaying information 
to local cluster heads, or edge gateways. This layer 
should realize energy efficiency by using intelligent sam-
pling patterns, low-duty-cycle processing, short-range 
communication schemes (such as Bluetooth Low Energy 
(BLE), Zigbee or LoRa). This is also done with the sen-
sors that prioritize their transmissions according to con-
ditions in advance-only transmitting data when there 
has been an extreme deviation in the parameters of 
the baseline health set in place according to the thresh-
old-sensitive transmission protocols.

Edge Processing Layer
The Edge Processing Layer serves as the first smart 
interface between raw sensor data and higher level clin-
ical choice design such that it plays an instrumental role 
in augmenting the level of efficiency and responsiveness 
to the overall and entire extent health care surveil-
lance architecture. This layer consists in Cluster Heads 
(CHs) and Edge Gateways that are embedded computing 

calibrated log-distance path loss models that are pre-
pared to work in the indoor environment with the 
effects of bodies shadowing. This enables viable real-
life measurement of packet delivery ratio (PDR), signal 
strength and reliability of the communication in dif-
ferent physiological and mobility conditions. Figure 6. 
Table 3 Antenna Configuration and Body-Centric Wireless 
Propagation. In nut-shell the proposed framework offers 
clear and explicit inclusion of the antenna design param-
eters and the results of the body-centric wireless mod-
eling to the robustness of the smart healthcare WSN, its 
coverage and longevity. The design methodology pre-
sented is communicative-sensitive and this way, not only 
does the sensor nodes retain its energy but also delivers 
unhindered and precise physiological monitoring in intri-
cate and dynamic indoor environments.

Methodology

The approach of the proposed system will combine the 
hardware-based optimization of the Wireless Sensor 
Networks (WSNs) with the software-implemented pre-
dictive analytics, guaranteeing both the low energy con-
sumption and a high reliability of monitoring health data 
and producing predictions. Execution has been designed 
in five major phases:

Fig. 6: Antenna Configuration and Body-Centric 
Wireless Propagation.

Table 3: Antenna Design Parameters for WSN Nodes.

Parameter Value Description

Antenna Type Microstrip Patch Antenna Lightweight, compact, low-profile design suitable for wearable sensors

Frequency Band 2.4 GHz ISM Common for Zigbee/BLE protocols used in low-power medical WSNs

Radiation Efficiency ~80% Optimized for body-centric short-range wireless communication

Gain 2–4 dBi Adequate for intra-cluster range (~10 meters) with low interference

SAR Compliance Yes (ICNIRP standard) Ensures electromagnetic exposure is safe for prolonged skin contact

Polarization Linear Reduces cross-polarization loss, improves reliability in dense networks
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devices including Raspberry Pi, Nvidia Jetson Nano, or 
ARM Cortex devices. The multiple sensor nodes pass 
data to these edge devices that make decisions about 
it with a specific cluster. They conduct data consolida-
tion by combining similar or duplicate readings of dif-
ferent sensors together and also to avoid redundancy 
which causes communication overheads. Data filtering 
and compression also is implemented by employing 
lightweight algorithms like moving average filters and 
Differential Pulse Code Modulation (DPCM) and only the 
smaller sized and pertinent data will then be passed on. 
Anomaly detection is one of the most important tasks of 
the edge layer and can be conducted with the help of 
the embedded Long Short-Term Memory (LSTM) neural 
network model. This model runs in real time to detect 
health-crisis abnormalities, e.g. cardiac arrhythmias, 
rapid changes in temperature, or oxygen desaturation, 
and, in such cases, may trigger immediate warnings or 
fully automated emergency measures without having 
to wait for cloud-side final verification. The edge layer 
ensures that the amount of data that must be sent to 
the cloud is drastically reduced because of data process-
ing locally, resulting in the savings of bandwidth, power 
consumption reduction, and the decreased latency 
of the whole system. Finally, it can be a powerful yet 
quickly responding decision-making node connecting 
energy-limiting sensing with smart and time-sensitive 
clinical actions.

Cloud Layer
The Cloud Layer would be the highest layer of the 
proposed architecture and it would cater as the main 
hub used to store data, to do analytics, visualization 
and also interface with the larger healthcare systems. 
Figure 7 shows that the system is based on the three-
tier architecture, with cloud layer addressing the edge 
and sensing layers, to provide comprehensive health-
care monitoring. This layer integrates effortlessly with 
the current Hospital Information Systems (HIS) and 
Electronic Health Records (EHRs) and guarantees that 
the patient data can be viewed by the clinician in a 
longitudinal and structured format so that an efficient 
diagnosis and treatment planning are possible. It helps 
in storing past health data, so the physicians can inves-
tigate trends and identify the long-term physiological 
trends in the patients. It also offers interactive dash-
boards and real-time alerts where the caregivers can 
base their decisions on metrics that are constantly 
updated. Also, it enables remote medical advice and 
telemedicine consulting using secure APIs and conve-
nient interfaces that can be used anywhere. In addi-
tion to simple data processing, the cloud platform has 
the capabilities to execute computationally heavy deep 

learning models in making predictions like the progress 
of diseases and health analytics of entire populations 
because these types of models cannot be processed 
through the edge due to available resource limitations. 
The cloud platform will apply strong synchronization 
functionality, backup procedures and access control on 
its layer to provide a secure scalable robust framework 
to the entire healthcare monitoring framework. The 
layer is not only used to ameliorate the system analyt-
ical functions but also crucial in the provision of real-
time, personal, and connected healthcare services.

Energy-Efficient Communication Protocol

The energy management is crucial in a Wireless Sensor 
Networks (WSNs), particularly in applications that involve 
monitoring individuals, such as health and in these cases 
the sensor nodes often have batteries, are deployed in 
locations that are inaccessible and wearable. In order to 
resolve this the proposed system incorporates a hybrid 
LEACH-TEEN based communication protocol that will 
seek to maximize the network life time of the network, 
minimize the amount of transmission energy, and ensure 
that reliable data is delivered.

Hybrid Clustering Approach
The new communication protocol provides an embod-
iment of the efficiency abilities of LEACH (Low-
Energy Adaptive Clustering Hierarchy) plus TEEN 

Fig. 7: Three-Tier System Architecture for Energy-
Efficient Smart Healthcare Monitoring.
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(Threshold-sensitive Energy Efficient sensor Network) to 
support the scalable, energy-efficient event-driven wire-
less sensor networks transmission. Here, the network 
gets divided into clusters and each cluster has a Cluster 
Head (CH) which collects information of member sen-
sor nodes and passes back the most necessary data to 
the edge or cloud layer. This greatly eliminates unnec-
essary broadcasts and saves energy over the network. 
Cluster Heads are not fixed to allow balanced consump-
tion of energy and prevent congesting given nodes. In 
the election process residual energy (prioritizing nodes 
with more energy left), distance to the base station (low 
consumption nodes get preference) and transmission 
history (assigning workload is balanced over time) are 
taken into account. The protocol will provide equitable 
distribution of energy, suppress premature node deple-
tion, and strengthen the overall network life lifespan by 
having CH roles regularly rotated according to such cri-
teria, which is very good in long- term applications such 
as healthcare monitoring the protocol.

TDMA-Based Scheduling
In a bid to optimize further the energy consumption in the 
proposed WSN system, the protocol is made to incorporate 
Time Division Multiple Access (TDMA) scheduling in every 
cluster. Within this scheme, each sensor node is assigned 
its own set of time during which it will relay its data to 
the Cluster Head (CH). In such a way, a single sensor 
node is allowed to communicate at a time. The following 
are some major benefits of this structured transmission 
schedule: it avoids collision of data which might otherwise 
cause retransmission and cause waste of energy; it avoids 
idle listening, when nodes just wait around, listening to 
the medium, but not saying anything, and wasting power; 
and it admits synchronized sleep/wake schedules, to leave 
some nodes at a low-power sleep-mode when they are not 
sending or receiving data. Together, they can provide sub-
stantial minimization of average energy consumed by the 
network, increases in reliability of communication, and in 
addition to that, they can prolong the lifetime of the sen-
sor nodes, which is a crucial demand in a continuous real-
time healthcare monitoring setting.

CH Selection Probability
A node iii will choose to become a CH according to its 
current computer energy status and its proximity to 
the base station. Mathematically, the Cluster Head (CH) 
selection probability There is a mathematical definition 
of Custer Head (CH) selection probability:
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Where:

• Pi is a probability that node iii is CH,
• Eresidual(i) is the current residual energy of node,
• Emax is the starting maximum energy on all nodes,
• d(i,BS) is the Euclidean distance between node iii and 

the base station.

With the help of this equation, the high energy and 
more proximate nodes to the BS have more chances to 
be chosen as CHs thus optimising energy consumption 
and transmission efficiency. Figure 8 the inverse depen-
dency on distance makes sure that long-range communi-
cation is kept to the minimum unless it is the case.

Data Aggregation and Compression

In Wireless Sensor Networks (WSNs) installed to mea-
sure physiological parameters with smart healthcare 
applications, the most common of which include ECG, 
temperature, SpO, and many others, high amounts of 
physiological data are constantly produced, and their 
efficient transmission is necessary. Passing raw informa-
tion of every sensor node to the cloud or edge will not 
only waste energy but will even result in congestion and 
latency. The proposed system considers the following 
solutions to the mentioned problems: a two-level sys-
tem of data aggregation and compression is applied at 
the Cluster Head (CH) level.

Data Aggregation
This is the main purpose of data aggregation by which 
redundancy of data gathered by more than one sensor 
node in a cluster is to be removed. Because a lot of 
physiological parameters (e.g., the heart rate of the 
body temperature) has changes of a minor value in a 
short time range, ongoing transmission of unmodified 
data causes the unwanted consumption of energy. CHs 
collect information of all member nodes and use sta-
tistical aggregation methods i.e. averaging, median fil-
ter, or delta encoding. To take an example when two 
or more sensors are reading almost the same, they 
are combined by the CH to one representative read-
ing. This tremendously lessens the number of trans-
missions, thus saving energy and minimizing thruput 
consumption.

Data Compression Using DPCM
Besides aggregation, there is also the use of Differential 
Pulse Code Modulation (DPCM) that is used to compress 
data. Instead of encoding full value of the data sam-
ples, DPCM encodes the difference between successive 
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Fig. 8: Hybrid LEACH-TEEN Clustering and TDMA Scheduling for Energy-Efficient Communication in Smart 
Healthcare WSNs.

samples. This can especially be efficient in healthcare 
signals, which have shorter variations over time (e.g. 
ECG waveforms or temperature trends), making encoded 
values smaller and thus able to be shorter numbered 
with fewer bits.

Mathematically, when x(n) is the most recent picture 
sample and x(n − 1) is the last one, DPCM sends:

 d(n) = x(n) − x(n − 1)

Rather than transmitting the entire signal x(n), the dif-
ference d(n), will be transmitted, and this is usually 
less bits to transmit it and consequently, it will make 
pistol-reducing.

Baseline Deviation Filtering
In additional optimization of communication load, the 
CHs compare data to the baseline levels and only notify 
deviations that are significant. As an example, when a 
temperature may automatically change within a normal 
range, the data on the change is not sent out instead 
that data is flagged and sent to the edge or cloud only 
after going out of a medical range (e.g., more than 1.5 
Celsius degrees above the limit of normal). Such an 
event-based transmission model is guaranteed to pro-
vide the network with reaction to important physiolog-
ical variations instead of uninterrupted play-out of the 
repetitive and steady data.

Energy and Bandwidth Benefits
The addition of data aggregation, Differential Pulse Code 
Modulation (DPCM) compression and the utilization of 
baseline deviation filtering to achieve the optimum result 
in the reduction of the quantity of data that has to be 
sent along the network. The result of this multi-layered 
data reduction scheme is a truly remarkable increase of 
up to 60 percent in volume of data to be carried thereby 
greatly reducing the load on the network. This ends up 
making the RF modules on the sensor nodes active less 
often and consequently have significantly reduced power 
consumption, which is essential in ensuring that battery 
life on wearable and implantable medical sensors is sig-
nificantly augmented. Also, by eliminating unnecces-
sary messages, the system also has available bandwidth 
thus increasing network scalability, and the capacity to 
support more sensors without degrading performance. 
Another benefit is the decreased end-to-end latency due 
to complained of the reduced data load, which does not 
need to be processed and passed at the edge and cloud 
layers. This efficiency is especially important in the 
healthcare settings, where patient safety is regarded as 
a real-time monitoring process, whereas the aspect of 
timely response impacts clinical decisions (Fig. 9).

Predictive Analytics Using LSTM

The central element of the suggested system would be 
to incorporate predictive analytics into the edge layer 
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Fig. 9: Multi-Stage Data Reduction Pipeline Using 
Aggregation, DPCM Compression, and Deviation 

Filtering in Smart Healthcare WSNs.

and further facilitate detection anomalies in health in 
real-time. The implementation of such functionality uses 
a lightweight, edge-deployable Long Short-Term Memory 
(LSTM) neural network which is an advanced version of 
Recurrent Neural Networks (RNNs) which are used to 
learn and predict temporal relationships and sequential 
patterns in time-series data of physiological signals.

Medical statistics, like ECG, SpO2, or temperature, are 
usually incredibly non-linear and include complicated 
time developments. Such fine but decisive temporal 
patterns that precede health deterioration, may not 
be properly captured by traditional statistical models. 
However, LSTM networks are very successful in acquir-
ing such temporal patterns, thus they are ideal as early 
predictors of pathology like cardiac arrhythmias, fever 
peak, or oxygen desaturation.

Data Preprocessing
The predictive analytics are made more robust and accu-
rate before the sensor data is fed into the LSTM-based 

anomaly detection model through a well-specified data 
preprocessing pipeline. Normalization is done first, with 
raw forms of physiological signals (ECG, temperature, 
oxygen saturation, etc.) scaled to the common range 
(usually [0,1]), so features of different scales will not 
dominate the kneader and will converge faster when 
performing the training. Second, outlier filtering of 
abnormal or corrupt values that could occur as sensor 
noise, hardware errors or errors during transmission, 
is performed. Such methods include Z-score analy-
sis or interquartile range-led statistical limits that are 
applied to detect and eliminate these outliers. Last but 
not least, the cleaned data is fed to feature extraction 
that computes important data about the time char-
acteristics to include mean, variance, peak-to-peak 
intervals and frequency represented as a result of Fast 
Fourier Transform (FFT) at the backdrop of time sliding 
windows. These characteristics make the input to the 
sequential vectors of the LSTM model, which provides 
the opportunity to discover intricate time series and 
successfully identify minute variations that can indicate 
health complications.

Model Training
The Long Short-Term Memory (LSTM) network that has 
been employed to detect health anomaly is trained 
offline by utilizing labeled time-series data with MIT-BIH 
Arrhythmia Dataset by far been utilized as the major 
benchmark during training and validation. A sliding win-
dow method, where sequential data streams are divided 
into overlapping fixed-length data segments is used to 
accurately model temporal derivations in physiological 
signals, mainly consisting in the grouping of 100 time 
steps. Each window is subsequently classified as a nor-
mal or an anomalous already marked by the clinicians 
so that the model learns how to distinguish the healthy 
and pathological patterns. The LSTM model architec-
ture is constructed using three layers that are stacked 
one on top of the other with 64 hidden units each layer 
to allow long and short-term dependencies on input 
sequences to be modelled. Then there is a dense layer 
fully connected and the activation is a softmax that pro-
vides the multi-class prediction of the different kinds 
of anomalies. Training of the model is conducted with 
the Adam optimizer, which is effective in working with 
sparse gradient since it was introduced, and the learning 
rate is set to 0.001. The loss function used is categorical 
cross-entropy to deal with a multi-class classification. 
The combination of architecture, training strategy and 
dataset will make the model sufficiently competent to 
be able to recognize the full spectrum of abnormalities 
present in the physiology with high precision and very 
few false positive in edge-based real-time settings.
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Model Inference on Edge Devices
The trained LSTM model is quantized and pre-pro-
cessing favorable to deployment in embedded edge 
devices, including the Raspberry Pi 4, Nvidia Jetson 
Nano, and ARM Cortex-M microcontroller, to conduct 
real-time health monitoring in resource-limited sit-
uations after offline training. These devices take a 
constant stream of data from local sensor nodes and 
perform on-device inference, guessing at the proba-
bility of occurrence of such physiological deviations 
like arrhythmias or abnormal temperature fluctua-
tions. Edge deployment of the model has a number of 
important benefits. Figure 10 First, it facilitates detec-
tion with low latency it comes in handy, and detection 
is below 100 milliseconds in life-threatening cases. 
Secondly, with locally based analytics, the system 
takes less bandwidth because only cases with a very 
high risk or unusual cases will be sent to the cloud, 
and thus, the energy and communication resources 
are saved considerably. Finally, edge-level inference 
offers improved data protection, since the raw health 
data generated by the device is not constantly trans-
mitted on external servers, since it is kept in a more 
secure manner on the local device. This design reso-
nates with clinical needs to be responsive and patient-
based issues of privacy and data security.

4.5 Simulation Environment

A hybrid modeling environment was created to assess the 
success of the suggested energy-efficient and intelligent 
healthcare monitoring framework, simultaneously utiliz-
ing network modeling and machine learning-related pre-
dictive analytics. This two-tier simulation environment 
will permit an end-to-end evaluation on the efficiency 

of communication as well as anomaly detection metrics 
with respect to realistic operating situations.

Toolchains and Software Framework
The simulation setting is constructed using two com-
bined toolchains, namely, NS-3 (Network Simulator 3) 
and TensorFlow/Keras, to undertake an overall assess-
ment of the suggested smart healthcare monitoring sys-
tem. The environment of Wireless Sensor Network (WSN) 
is simulated by using NS-3 allowing realistic detailed 
modelling of MAC and routing protocols, node mobility, 
energy consumption, and packet-level communication 
behaviour. It also makes it possible to have very specific 
breakdowns of network performance in different oper-
ating conditions such as cluster head dynamics and data 
transmission scheduling. At the same time, the Long 
Short-Term Memory (LSTM) neural network, which con-
tinuously detects anomalies in health status and reports 
them, is developed and trained using TensorFlow/Keras. 
The model is firstly trained offline on such benchmark 
time-series datasets as the MIT-BIH Arrhythmia, and 
during the inference, it is then extracted and imple-
mented into the edge simulation. Incorporating NS-3 net-
work simulation capability with TensorFlow deep neural 
network capabilities offers this simulation framework 
a unique combination of evaluation layers combining a 
network-context communication level (energy consump-
tion, latency, packet receipt) and machine learning level 
(accuracy, inference-latency). The combination of net-
working and intelligence in this way means that the two 
key components of the proposed system will be able 
to be tested in a real-life, synchronized manner, which 
will generate significant knowledge of how the system 
works, scales and is useful in a clinical setting.

Simulation Parameters
The realization of the simulation environment is orga-
nized in the way that to simulate realistic conditions of 
healthcare monitoring allowing to test thoroughly sys-
tem performance at dense deployment (such as in hos-
pital wards or retirement homes). A total of 100 sensor 
nodes is deployed randomly and evenly over an area of 
30 meters by 30 meters, and this represents a high-den-
sity confined medical facility deployed. The nodes are 
set to operate in 10 meter transmission range and have 
an initial battery capacity of 1000 mAh, that is close to 
the characteristics of wearable or implantable biomedi-
cal devices. The process of communication is regulated 
by a hybrid protocol including LEACH-TEEN implemented 
with collision-free and energy-saving transmissions, 
TDMA scheduling. The info is gathered in 10-sec incre-
ments and cluster heads are interchanged once each 30 
rounds to evenly distribute energy expenditure within 

Fig. 10: LSTM-Based Predictive Analytics Pipeline for 
Real-Time Anomaly Detection in Smart Healthcare 

Edge Devices.
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capable of providing real-time decision that can be used 
in time-sensitive healthcare applications. Key settings 
in terms of parameter configuration that are used in 
the simulation exercise are summarized in Table 4 that 
includes node density, transmission range, clustering 
protocol, and edge inference capabilities among others. 
Simultaneous tracking of the communication efficiency 
as well as the intelligent inference allows this simula-
tion environment to carry out a powerful, quantitative 
assessment of the system performance that takes practi-
cal constraints on the actual system usage into account, 
and indicates that it is ready to be implemented in a 
real-world application, such as a smart healthcare.

Evaluation Metrics

To thoroughly evaluate the effectiveness and benefits of 
the suggested smart healthcare monitoring framework, a 
diverse metric of evaluation, encompassing not only the 
network-level effectiveness, but also the predictive ana-
lytics power was developed. Those metrics give a quan-
titative and in-depth foundation to draw the comparison 
of the system performance in the aspects of energy 
consumption, communication reliability, and detection 
of the real-time health anomalies. The framework was 
compared to two established baseline architectures: 
(1) a classic LEACH-based WSN, which conducts a simple 
clustering and data transfer with no advanced analyt-
ics, and (2) a cloud only including all raw sensor data 
in transmission to the cloud, where raw data collected 
can be centrally processed, therefore said architecture 

the network. In edge computing, Raspberry Pi 4 and 
Nvidia Jetson Nano devices are simulated so that they 
can run the trained LSTM model that will have three lay-
ers and 64 hidden units. The performance of the model 
is also optimised to have an inference latency of under 
100 milliseconds, so that it is real time responsive. Such 
configuration of the simulation will make it possible to 
stress test the energy efficiency of the system, as well 
as its communication traffic, and anomaly detecting 
possibilities, thus proving that the system is suitable to 
be used in real-life healthcare settings.

Performance Metrics
In order to thoroughly evaluate the performance of 
the proposed smart healthcare monitoring framework, 
the simulation is measured in terms of Wireless Sensor 
Network (WSN) performance which includes various 
metrics as well as AI analytics performance which also 
includes various metrics to implement the effectiveness 
of the proposed algorithm. Figure 11 shows the overall 
simulation environment that would represent the syn-
ergy effect of network-level modeling and edge-based 
predictive intelligence in an integrated architecture. 
On the networking front, the most important mea-
sures are node energy depletion or how quickly indi-
vidual sensors run out of power, packet delivery ratio 
(PDR) or how stable a data link is, average latency or 
the length of time it takes to deliver the data, and clus-
ter lifetime or how long a cluster can be used before it 
needs to be reformed. With regards to AI, the anomaly 
detection model based on LSTMs is tested based on the 
accuracy of predictions, precision, recall and F1-score 
which combine to give a fair idea about the classifica-
tion confidence of the anomaly detection model. Also, 
inference latency is taken so that the model will be 

Fig. 11: Integrated Simulation Environment for 
Evaluating Energy-Efficient WSN and Predictive Edge 

Intelligence in Smart Healthcare Systems.

Table 4: Simulation Configuration for Smart 
Healthcare Monitoring Framework.

Parameter Value

Number of Sensor Nodes 100

Deployment Area 30 m × 30 m

Node Placement Random Uniform Distribution

Transmission Range 10 meters

Initial Battery Capacity 1000 mAh per node

Communication Protocol Hybrid LEACH-TEEN with 
TDMA scheduling

Data Transmission Interval Every 10 seconds

Cluster Head Rotation Every 30 rounds

Edge Devices Simulated Raspberry Pi 4/Jetson Nano

LSTM Model Architecture 3 layers with 64 hidden units

Inference Latency Target < 100 ms

Dataset Used MIT-BIH Arrhythmia

Simulation Tools NS-3 for WSN; TensorFlow/
Keras for AI model
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or loss of data. On the contrary, when over-all system life-
time, and more so when the node death rate is well dis-
tributed, is longer, then the architecture is more robust 
and fault-tolerant. It can be of high value in a healthcare 
environment, where a uniform sensor coverage is crit-
ical to patient safety and continuity in diagnostics. The 
dynamic cluster head rotation and energy-aware commu-
nication approaches proposed allow the extension of both 
FND and LND and this is a benefit to the system as there 
is much potential of having a reliable long run in real time 
medical monitoring applications.

Prediction Accuracy (% Correctly Identified Anomalies)
The performance of the LSTM-based anomaly detection 
model put at the edge is evaluated by the accuracy of 
predictions. It is referred to as a percentage of correctly 
identified anomalies on physiological data (e.g., arrhyth-
mias, temperature surges, oxygen reduction) regarding 
all true anomalies in the data. This indicator is crucial to 
evaluate clinical reliability of the system and its ability 
to cause timely alerts or even intervention by a medical 
professional.

Latency (Milliseconds from Sensing to Prediction)
Latency refers to the total amount of time taken to 
measure the seconds between the period that a sensor 
records a physiological signal and when the system iden-
tifies an anomaly and responds to them.

It encompasses data transmission, edge processing as 
well as the model inference. Real time responsiveness 
In life-threatening medical situations, such as cardiac 
arrest or hypoxia, low latency.

Packet Delivery Ratio (PDR)
PDR is the proportion of the packets hoisted successfully 
at the targeted destination (e.g. CH, edge, or cloud) 
over number of packets transmitted by sensor nodes. 
Table 5: Evaluation Metrics of the Proposed Smart 
Healthcare Monitoring Framework It shows the reliability 
of the network during communications and is used to 
gauge the effects of the proposed protocol on packet 
losses because of interference, energy depletion or traf-
fic congestion. When the PDR is high (>95 %) it implies 
effective and stable information delivery, which is vital 
in influencing clinical decisions.

Performance Evaluation

Simulation Setup

Very careful thought has been put in the simulation 
setup used to assess the proposed energy efficient 

would lead to using more bandwidth and inflating laten-
cies. To evaluate network performance five metrics 
of each node energy depletion, packet delivery ratio 
(PDR), network latency, and cluster lifetime are being 
selected, whereas to evaluate the effectiveness of the 
edge-deployed LSTM 6 measures of the prediction accu-
racy, precision, recall, F1-score, and inference latency 
are being chosen. Such a comprehensive assessment 
system will guarantee the validity of the indicated 
approach and the efficacy of the recommended system, 
as such, the working of the suggested system will be 
proved in simulated circumstances of healthcare check-
ing execution, and even in real-life control situations.

Energy Consumption (Joules per Transmission)
In the healthcare applications of Wireless Sensor 
Networks (WSNs) in particular, energy efficiency is a 
critical measure of performance because network nodes 
are commonly powered by batteries that should last 
indefinitely without any manual intervention. It is the 
measure of how much energy is used, on average, in a 
given data transmission, taking into account the whole 
cycle of sensing, data processing and wireless transmis-
sion. The low power use per transmission point of the 
system is to show the development of the better energy 
efficiency, which transports directly into longer lifespan 
of the sensor nodes in use and the minimization of the 
systems maintenance. Energy efficiency in the proposed 
framework is quite high since the data processing is 
being performed locally at the edge thus reducing the 
number of long-range transmissions. Also, data-aggrega-
tion and DPCM utilize process to compress data, thereby 
reducing the amount of data and omitting redundancy 
processes further saving of the energy. The system is 
very effective in maintaining the network in long-term 
deployments like aging care, chronic illnesses, and 
post-surgery due to intelligent use of communication to 
communicate only relevant and preprocessed data.

Network Lifetime
Network lifetime is one of the major parameters of the 
sustainability and reliability of a Wireless Sensor Network 
(WSN) especially in the medical field where continu-
ous monitoring is mandatory. The network lifetime in 
this paper is characterized in terms of two parameters 
namely: First Node Dies (FND) the time when the first sen-
sor node as indicated by depletion in the battery and Last 
Node Dies (LND) by use of non-functional status of the 
last node in the network. The two criteria give a clue on 
how well the system economically balances the amount 
of energy consumed in the entire network. The great dif-
ference between the FND and LND indicates an unequal 
distribution of the energy, which can cause coverage gaps 
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smart healthcare monitoring framework by ensuring 
that both communication and predictive performance 
are evaluated in realistic conditions. The general sim-
ulation architecture is presented in figures 12 with a 
specific emphasis put on the connection between the 
NS-3 network environment and the TensorFlow-based 
anomaly detection module. The wireless sensor net-
work (WSN) was simulated using NS-3 which helped to 
achieve the model of the network configuration node 
deployment, communication protocols, and energy 
consumption patterns, whereas LSTM-based anomaly 
detection model was developed, trained, and tested 
using TensorFlow. The sensor nodes experiment was 
conducted with a simulated environment of 100 sen-
sor nodes distributed across a grid of 30-meter square 
size with sensor nodes placed randomly and uniformly. 
The nodes were deployed with small battery power and 
transmission power as well as a constrained node local-
ity and a limited communication range with the hybrid 
clustering protocol using the LEACH- TEEN with TDMA 
scheduling. An edge layer that performed virtualiza-
tion was done under NS-3 and it came with data aggre-
gation, DPCM-based compression and edge inference 
via Python-integrated pre-trained LSTM models using 
Python bindings. Standard medical datasets including 
MIT-BIH have been used to provide real-time physiolog-
ical data (e.g. ECG, SpO2, temperature) to the system. 
Key metrics were evaluated in the assessment, counting 
the energy (Joules) expended per successful transmis-
sion, the network latency (the amount of time data is 
captured as compared to prediction), and the prediction 
accuracy, thus measuring the correct classification of 
health anomalies. It was a complete performance eval-
uation which confirmed the efficiency of the proposed 
system in saving power, lowering latency and consis-
tency of real time monitoring of health with the edge 
intelligence.

Table 5: Evaluation Metrics for the Proposed Smart Healthcare Monitoring Framework.

Metric Category Definition/Purpose Target/Threshold

Energy Consumption Network Efficiency Avg. energy consumed per transmission (includes 
sensing, processing, and communication)

Lower is better  
(<1.5 mJ)

Network Lifetime (FND/
LND)

Network Sustainability Time until first and last node depletes battery Higher is better 
(>700 hrs)

Prediction Accuracy AI Performance Percentage of correctly detected anomalies >90%

Latency Real-Time Response Time from signal capture to anomaly prediction <100 ms

Packet Delivery Ratio 
(PDR)

Network Reliability Ratio of successfully received packets to total 
packets sent

>95%

Precision, Recall, 
F1-Score

AI Classification Measures of classification quality (false positives/
negatives)

>90% (for each)

Inference Latency AI Speed Time taken by LSTM model to process and classify 
input sequence

<100 ms

Fig. 12: Simulation Setup for Energy-Efficient Smart 
Healthcare Monitoring.

Results and Analysis

The effectiveness of the suggested energy-efficient 
wireless sensor network architecture with embedded 
edge-based predictive intelligence was comprehensively 
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network is equally distributed on the sensor nodes and 
to a large extent extending the network life span and 
eliminates premature node failures. At the same time, 
this rapid and correct diagnosis of the most serious 
health anomalies, arrhythmia or uncharacteristic tem-
perature rise, will make it possible to adequately equip 
a caregiver with timely information with the help of 
the containment of a lightweight LSTM-based anomaly 
detection model. This intelligence is incorporated in this 
layer at the edge processing, thus aiding in mitigation of 
the amount of data passed on to the cloud thus reduc-
ing latency and dependency on remote infrastructure 
which is a critical component in terms of low connectiv-
ity as well as emergency devices. When handling certain 
operational challenges, the framework employs resid-
ual-aware clustering to rationalize energy limitations, 
adopting edge-level filtering and edge-based compres-
sion, based on DPCM codecs, to counteract data over-
load, and, finally, guaranteeing response time sensitivity 
by the means of low-latency inference. Moreover, as 
part of creating a safer system with regard to patients, 
it adds extra sensor verification mechanisms that trian-
gulate various sets of sensor data to initiate alarming 
events. In aggregate, these advances make the proposed 
system a viable scalable, resilient and smart system to 
be used to monitor the continuous health of individuals 
both in clinical and home-care settings and in response 
to the emerging social need to find proactive and less 
invasive forms of healthcare delivery that are heavily 
reliant on the technology.

Conclusion and Future Work

The paper has proposed a low-energy and all-inclu-
sive Wireless Sensor Network (WSN) system that has 
an edge-based predictive analytics system to allow the 
real-time and intelligent monitoring of smart health-
care. The system is effective in overcoming these 
two complications of energy limitation and real-time 
responsiveness of clinical information by including 
residual energy-aware clustering, efficient data aggre-
gation and compression methods, and lightweight LSTM 
model through anomaly detection. Results of the simu-
lation confirmed the framework advantage over other 
conventional models with great enhancement in the 
network lifetime and energy usage, network latency, 
and prediction error. These results indicate a possi-
bility of the framework facilitating sustainable, accu-
rate, and timely monitoring of health. In particular, 
the applicability of this approach would materialize in 
such settings where operations cannot be halted and 
prior initiatives to mitigate the challenge are required. 
Next, the emphasis of further work will be made on the 

compared with that of a classic benchmark WSN model 
that is not the intellectual inference. As it was shown in 
Figure 13, the results indicate a drastic positive change 
in all main performance indicators. With energies saved 
by the proposed system due to smart clustering, aggre-
gation of data and efficient decision-making, the net-
work lifetime maximized to a user-identified 748 hours 
as compared to 540 hours by the baseline configuration, 
a relative gain of 38.6%. Equally, the average amount 
of energy per data packet decreased by a third i.e. 
33.3 percent, to 1.2 mJ, following DPCM-based compres-
sion and filtering based on thresholds, which decreases 
redundancy level of data. Regarding the analytics 
aspect, the LSTM model that was deployed to the edge 
had 93.8 and 73.6 percent prediction accuracy com-
pared to the baseline, increasing prediction accuracy 
by 27.4 percent on detecting physiological anomalies, 
e.g., arrhythmias or spikes in temperature. In addition, 
the end-to-end time (latency) of 210 ms for sensor data 
acquisition to detection of anomaly was improved to 162 
ms which reflects on 22.9 percent free response time 
response in a time-sensitive healthcare application. All 
these findings confirm the statement that the suggested 
system can not only save energy and increase the work-
ing life cycle but also contribute to diagnostic precision 
and immediate reaction, which is exactly why it will be 
appropriate to implement it in contemporary intelligent 
healthcare settings.

Discussion

The gains of the proposed system are: competitive 
energy efficiency versus clinical efficiency with regard 
to the main complications of wireless sensor networks 
(WSNs) implementation as smart healthcare. Using resid-
ual energy-aware clustering, the system also ensures 
that the balance of the energy consumption of the 

Fig. 13: Performance Metrics between Baseline WSN 
and Proposed Smart Healthcare Monitoring System.
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Cardiologist-level arrhythmia detection with deep neural 
networks. Nature Medicine, 25(1), 65–69.

8. Yang, Z., Chen, W., Li, Y., & Wu, J. (2019). LSTM networks 
for healthcare monitoring. IEEE Access, 7, 106070–106081.

9. Alemdar, H., Ertan, H., Incel, O. D., & Ersoy, C. (2010). 
Wireless sensor networks for healthcare: A survey. 
Computer Networks, 54(15), 2688–2710.

10. Aazam, M., & Huh, E. N. (2015). Fog computing micro 
data-center based dynamic resource estimation and 
pricing model for IoT. Proceedings of the 2015 IEEE 
International Symposium on Applied Computing (SAC).
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(2021). Fog computing for healthcare: A survey. ACM 
Computing Surveys, 53(3), 1–41.

12. Ren, J., Zhang, D., He, S., Zhang, Y., Li, T., & Chen, Y. 
(2017). Edge computing-based IoT architecture for low-la-
tency healthcare monitoring. IEEE Access, 5, 24745–24755.

13. Kiran, M., & Ramesh, V. (2019). Energy-efficient clus-
tering and classification for smart healthcare. Health 
Information Science and Systems, 7(1), 1–13.

14. Raza, S., Malik, S. U. R., Ahmad, M., & Khalid, R. (2021). 
Reinforcement learning for energy-aware sensor manage-
ment. Sensors, 21(3), 1–15.

15. Kavitha, M. (2025). Real-time speech enhancement on 
edge devices using optimized deep learning models. 
National Journal of Speech and Audio Processing, 1(1), 
1–7.

16. Prasath, C. A. (2025). Adaptive filtering techniques for 
real-time audio signal enhancement in noisy environ-
ments. National Journal of Signal and Image Processing, 
1(1), 26–33.

17. Surendar, A. (2025). Design and optimization of a com-
pact UWB antenna for IoT applications. National Journal 
of RF Circuits and Wireless Systems, 2(1), 1–8.

18. Jeon, S., Lee, H., Kim, H.-S., & Kim, Y. (2023). Universal 
Shift Register: QCA Based Novel Technique for Memory 
Storage Modules. Journal of VLSI Circuits and Systems, 
5(2), 15–21. https://doi.org/10.31838/jvcs/05.02.03

19. Suneetha, J., Venkateshwar, C., Rao, A.T.V.S.S.N., 
Tarun, D., Rupesh, D., Kalyan, A., & Sunil Sai, D. (2023). An 
intelligent system for toddler cry detection. International 
Journal of Communication and Computer Technologies, 
10(2), 5-10.

real-world implementation in the setting of a hospital 
and home-care environments to test the performance 
of the system in real working conditions. Besides, it is 
important to include a high level of security and privacy 
in order to safeguard delicate patient information and 
to be able to comply with healthcare data privacy. The 
other fruitful pathway lies in the creation of adaptive 
AI models that would learn and personalize the pre-
dictions over time by following the individual patient 
physiology and therefore would be more diagnostic and 
saved false alarms. These improvements will also serve 
to promote the practicality, scalability, and influence to 
transform the next-generation digital healthcare deliv-
ery through the system.

References

1. Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. 
(2000). Energy-efficient communication protocol for 
wireless microsensor networks. Proceedings of the 33rd 
Annual Hawaii International Conference on System 
Sciences (HICSS).

2. Manjeshwar, A., & Agrawal, D. (2001). TEEN: A routing 
protocol for enhanced efficiency in wireless sensor net-
works. Proceedings of the 15th International Parallel and 
Distributed Processing Symposium (IPDPS).

3. Lorincz, K., Malan, D. J., Fulford-Jones, T. R. F., 
Nawoj, A., Clavel, A., Shnayder, V., ... & Welsh, M. (2004). 
Sensor networks for emergency response: Challenges and 
opportunities. IEEE Pervasive Computing, 3(4), 16–23.

4. Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy- 
efficient, distributed clustering approach for ad hoc sen-
sor networks. IEEE Transactions on Mobile Computing, 
3(4), 366–379.

5. Smaragdakis, G., Matta, I., & Bestavros, A. (2004). SEP: 
A stable election protocol for clustered heterogeneous 
wireless sensor networks. Proceedings of the Second 
International Workshop on Sensor and Actor Network 
Protocols and Applications (SANPA).

6. Zarei, A., Asl, B. M., & Kadkhodamohammadi, A. (2017). 
ECG signal classification using support vector machine 
and artificial neural network. Computers in Biology and 
Medicine, 89, 486–492.


	_GoBack



