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Abstract 

Modern wireless communication systems, particularly those involving smart antennas and 
software-defined radio networks, require efficient and secure data transmission under 
increasing cybersecurity threats. Traditional intrusion detection mechanisms often fail 
to scale with the dynamic demands of high-speed, low-latency wireless environments. 
This paper proposes an integrated framework that combines Extended Berkeley Packet 
Filter (eBPF)-based kernel-level packet telemetry with deep learning techniques, specif-
ically Gated Recurrent Unit (GRU) models, for real-time anomaly detection in wireless 
communication systems. The approach leverages the CSE-CIC-IDS2018 dataset, processed 
through random sampling, Z-score normalization, and ANOVA-F feature selection, to train 
a GRU-based detection model capable of analyzing system-level metrics such as TCP ses-
sion anomalies and malformed packet flows within wireless infrastructures. Packet capture 
and filtering are performed directly within the Linux kernel using eBPF, ensuring minimal 
latency. This mechanism is especially suited for software-defined antenna systems, where 
security must be maintained without compromising throughput. Experimental results show 
that the proposed system achieves an accuracy of 97.78%, demonstrating its viability for 
secure and adaptive intrusion detection in next-generation wireless networks.
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Introduction 

Prior to the 1990s, packet monitoring and analysis 
were carried out using the traditional packet filtering 
mechanism, where all the packets would be duplicated 
from the kernel space to the user space, thereby cre-
ating a packet processing latency. Steven McCanne 
and Van Jacobson proposed a mechanism known as 
Berkeley Packet Filter (BPF) between the years 1992–
1993, wherein not all the packets are duplicated from 
the kernel space to the user space [1]. BPF was unlike 
earlier systems in that it executed programs in a vir-
tual machine designed for register-based processors and 
included per-application buffers for which no copy of 
all information was necessary in order to make a deci-
sion [2], [3]. eBPF, Extended Berkeley Packet Filter, 
enables user space applications to provide programs 
that are executed in the Linux kernel and augment its 
 functionality [4].

Today, DL technology is one of the favorite topics of 
interest in the fields of machine learning, artificial intel-
ligence, data science, and analytics, as it can learn from 
input data. Different corporations like Google, Microsoft, 
etc., actively research it because it can provide remark-
able outcomes for various types of problems and clas-
sification datasets, and also for regression datasets [5].

An Intrusion Detection System (IDS) monitors network 
traffic for suspicious activity and alerts when such activ-
ity is noted [6]. It is basically a program that inspects a 
network or system completely or in part and reports any 
harmful activities [7] .

Conventional IDS tends to fall short in the network 
security performance requirements, especially for the 
detection of advanced attacks like DoS and DDoS [8]. 
The current packet filters are neither flexible nor highly 
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deploying ML-enabling security functions within the ker-
nel. Limitations are the complexity involved in imple-
mentation because of the eBPF’s substantial verifier 
limitations, as well as the diminished flexibility in sup-
porting more intricate ML frameworks.

Qiu et al. (2024) [11] solved the problem of Advanced 
Persistent Threat (APT) detection by introducing a 
hybrid framework that uses eBPF for the collection of 
low-level network traffic and a deep learning model 
based on the Transformer for detection. The system col-
lects kernel-level network traffic and analyzes it with 
a Transformer to discover APT actions. Tested with a 
five-server simulated network under different intensi-
ties of attacks, the proof of concept achieved a 96.5% 
detection accuracy and performed better than Snort in 
terms of accuracy, latency, and resources. Some advan-
tages are high detection accuracy, low latency, and the 
convenience of supporting complex threat traces. Some 
disadvantages are dependency on pre-collected fea-
tures for input to the model and possible complexity 
with deployment involving kernel-space and user-space 
reconciliation. 

Scholz et al. (2018) [12] Examined the implications of 
Linux eBPF performance for filtering packets, which 
surpassed the limitations of traditional centralized fire-
wall configurations. The study offered two case studies: 
pre-kernel filtering using eXpress Data Path (XDP) and 
application filtering with socket-attached eBPF. XDP 
recorded up to 10 million packets per second (Mpps) 
with just-in-time (JIT) compilation, which was up to 
4× faster than iptables and nftables, with socket-level 
filtering providing fine-grained, application-by-applica-
tion control without root access. Advantages included 
enhanced flexibility, lower latency, and decentralized 
rule management. Drawbacks included the presence of 
JIT-induced latency outliers and the eBPF program size 
limitations. 

Tolkachova et al. (2023) [13] investigated the applica-
tion of extended Berkeley Packet Filter (eBPF) technol-
ogy for extending ransomware detection and monitoring 
in real-time. Aiming at the limitations of conventional 
signature-based antivirus solutions, a hybrid detection 
framework was proposed using eBPF to analyze sys-
tem calls, process actions, and performance counters. 
With a secure two-layered virtualized lab, a Support 
Vector Machine (SVM) classifier, trained across more 
than 100,000 events, achieved 95.2% accuracy, 94.8% 
precision, and 95.5% recall for ransomware activity 
detection. The method is characterized by high speed, 
flexibility, and rich kernel-space visibility. Issues with 

performant. To overcome the shortcomings a Gated 
Recurrent Units (GRUs) in deep learning models and 
extended Berkeley Packet Filter (eBPF) for packet filter-
ing are proposed. The GRU model, through its capacity 
to learn temporal dependencies in sequential data with 
minimal computational cost, facilitates effective detec-
tion of anomalies in network activities, with the help 
of eBPF, which enables high-performance, tunable in- 
kernel packet filtering.

Related Work

This section describes the necessary background on the 
eBPF and deep learning.

Deokar et al. (2024) [9] performed an empirical analy-
sis to uncover the eBPF application development chal-
lenges, spurred by the rapid evolution of the ecosystem 
and growing usage in the domain of networking and 
observability. To counteract the absence of a system-
atic understanding, 743 Stack Overflow posts with the 
tag “eBPF” were examined by the researchers, with 
200 manually classified and the balance further classi-
fied using NLP techniques. The precision of the pipeline 
was 84% with the application of XGBoost across various 
aspects. The results also stated that 36% of the errors 
are related to ecosystem primitives and 25% are related 
to the mistakes of the verifier, reflecting the nuances 
caused by the mismatches with documentation as well 
as the rapidly changing tools. Advantages of their meth-
odology are a taxonomy of the development problems 
and practical recommendations for enhancing tools. 
Drawbacks are the possible biases with Stack Overflow 
as the source of data and lower model accuracy with 
complex categories. The paper is the first large-scale 
quantitative analysis of eBPF development problems, 
and the findings provide insight for directing future tool-
ing and documentation.

Gallego-Madrid et al. (2024) [10] Overcome the chal-
lenge of implementing intelligent traffic handling in 
resource-constrained IoT scenarios. They implemented 
a Multi-Layer Perceptron (MLP) neural network in the 
Linux kernel using eBPF in order not to rely on ML han-
dling in the user space. By translating an MLP model to C 
and making the necessary adjustments for eBPF limita-
tions, their implementation saved 97% in execution and 
6% in CPU usage over the traditional alternative in the 
user space. The approach proved stable in a commodity 
hardware setting, specifically in a 6LoWPAN-based test-
bed for the purpose of detecting a “Hello Flood” type of 
attack. The integration minimized latency and resource 
requirements, demonstrating the possibility of directly 
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Denial of Service (DDoS), Web-based attacks, and inter-
nal network penetration. The attacking infrastructure 
used for the simulation is made up of 50 machines, with 
the victim organization represented by five depart-
ments, with 420 PCs and 30 servers. Each machine on 
the victim side includes network traffic and log files. 
The dataset also contains 80 network traffic features 
extracted with CICFlowMeter-V3, facilitating in-depth 
traffic analysis with anomaly detection [14].

Random sampling

In this process, each population’s member possesses an 
equal and independent probability of being selected. 
The sampling frame helps the researcher to choose 
elements from the population randomly by generating 
random numbers for each member [15]. In the pro-
posed system, the CSE-CIC-IDS2018 contains 16,232,943 
records. Using random sampling, it was decreased to 
1,000,0000 with the same class distribution as the data-
set, which has 83% normal and 17% attack.

Z-score normalization 

Z-score is an excellent statistical index since it supports 
the determination of the probability of a given value in 
a normal distribution, as well as enables a comparison 
of scores obtained from various normal distributions. 
This is done through converting (or standardization) the 
raw scores to a z-score so that the native distribution is 
translated to a standard normal distribution. The input 
value is normalized based on Equation 1 as follows [16]:

( )
−

=
aij

Z ij
µ

σ

z(ij) = is the new value.
aij =is the old value.
μ =the mean of the column of the input value.
σ =the standard deviation of the column of the input 
value.

Anova-F score

Analysis of Variance (ANOVA) is a statistical feature 
selection algorithm for assessing the significance of 
numeric features with regard to a categorical tar-
get variable. ANOVA is frequently used in classifica-
tion problems to identify whether the means of two or 
more groups are statistically different. The F-value in 
ANOVA measures the ratio of variance between groups 
to variance within groups. The larger the F-value, the 
closer the relationship between a feature and the target 

implementation are the complexity of development, 
dependency on hardware, and relative novelty of eBPF’s 
application to ransomware scenarios.

Methodology

The CSE-CIC-IDS2018 dataset is utilized in the proposed 
system for IDS. The dataset is used along with IDS and 
eBPF for packet filtering. The proposed system is thor-
oughly discussed as given below and as illustrated in 
Figure 1.

CSE-CIC-IDS2018

This dataset was created as a collaborative effort by the 
Communications Security Establishment (CSE) and the 
Canadian Institute for Cybersecurity (CIC) [11]. It uses 
a profile-based methodology to produce cybersecu-
rity datasets systematically. The dataset captures rich 
descriptions of multiple types of intrusions, together 
with abstract distribution models for applications, 
protocols, and lower-layer network entities. The data-
set contains seven different attack types: Brute-force, 
Heartbleed, Botnet, Denial of Service (DoS), Distributed 

CSE-CIC-2018

       Apply a random sample 
(e.g. 1M rows) 

Applying Z-score 
normalization 

      Building GRU model  

        Feature selection 
ANOVA F-score 

        Splitting into train (70%) 
and test (30%) 

 Launching eBPF 

Training  

   Evaluation  

30% 

Fig. 1: Proposed system.
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and behavior monitoring is handy in security- sensitive or 
performance-critical environments.

GRU (Gated Recurrent Unit) 

is employed as a deep learning model to process the 
time-series or sequential information like the system 
metrics gathered through eBPF (e.g., TCP connections, 
syscalls) for discovering the hidden patterns that might 
signify the regular or malicious activity. The GRU model 
is trained for 20 epochs, with system metrics (e.g., TCP 
connections, syscalls, CPU usage) gathered through an 
eBPF-supporting Linux server. The metrics are captured 
during training as well as the testing phase, providing 
visibility of system performance during model training. 
The trained GRU model is then checked for accuracy, 
precision, recall, and F1-score over the test corpus. 
The approach supports the merging of the offline data 
with live telemetry from the system for enhancing the 
robustness of the model as well as for facilitating the 
performance evaluation as per security awareness.

Evaluation

eBPF gathers metrics such as TCP connections, syscall 
counts, and CPU usage. Runtime metrics provide a fur-
ther frame of analysis for assessing not only the accu-
racy and F1-score of the model, but also the resource 
usage during the learning process. Once trained, the 
predictive power of the model is measured by accuracy, 
precision, recall, and F1 score following regular cyber-
security protocols for evaluation. This combined pipe-
line enables researchers to test the GRU’s detection 
capacity in realistic monitored conditions.

+
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Implementation and Results

The system proposed employs an IDS via a GRU running 
on a Windows client (with PyCharm) for model training 
and a Linux server with Extended Berkeley Packet Filter 
(eBPF) for monitoring the system. The GRU model for 

variable. The score determines whether the means for 
different classes (as defined by the target vector) are 
different when single numerical features partition the 
data [17].

• Steps for ANOVA-based Feature Selection:
1. Select all features from the original dataset.
2. Compute the ANOVA F-score between each feature

i and the target variable
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• K: Number of groups (or classes)
• N: Total number of observations
• ni:  Number of observations in group i
• Ȳi:  Mean of group i
• Ȳ: Overall (grand) mean
• Yij: Value of the j, observation in group i

Data splitting

The dataset is divided into two parts for model training 
and testing:

1. Training Data (70%): This data is used to train the
GRU

2. Incorporate eBPF (Extended Berkeley Packet Filter)
monitoring,

3. Testing Data (30%): Assesses the model’s perfor-
mance on new data, ensuring its ability to generalize
effectively.

eBPF (extended Berkeley Packet Filter)

eBPF is utilized to monitor the activity of the system 
by attaching kernel probes to monitor TCP connect 
attempts (tcp_connect) and system calls (sys_enter) by 
process ID. It captures the low-level metrics in using BCC 
(BPF Compiler Collection) and stores them within hash 
maps, which facilitates efficient and lightweight moni-
toring of the system’s behavior. The aggregated statistics 
are then pushed to a connected client, giving insight into 
system usage and performance. Real-time performance 
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them to the client for anomaly detection with deep 
learning, leveraging the trained GRU model.

This is the Windows-based client side of the illustrated 
Intrusion Detection System (IDS), which is running 
the GRU training process in PyCharm with the help of 
TensorFlow. The terminal shows successful data loading 
and model initialization, followed by a “Connected to 
eBPF server” confirmation message, which affirms an 
established connection with the Linux server monitoring 
system metrics through eBPF.

The following is a screenshot of the live telemetry 
gathered and streamed by the running Linux server, an 
essential component of the proposed architecture for 
an IDS. Once the Windows client (192.168.181.1) is suc-
cessfully connected, the server starts streaming time-
stamped system indicators in intervals. The indicators 
are centered around metrics such as tcp_connections, 
syscalls, cpu_percent, statistics for memory usage, 
network throughput (bytes_sent_per_sec, bytes_recv_
per_sec), and latency (tcp_latency). The measures are 
obtained via eBPF probes and represent kernel-space 
monitoring in real-time. The measures are streamed to 
the client running Windows, where the GRU model is 
used to process them for the detection of anomalies, a 
representative application of the practical use of eBPF 

the client is trained with the CSE-CIC-IDS2018 dataset 
through preprocessing with random sampling, Z-score 
normalization, and ANOVA F-score-based feature reduc-
tion to increase accuracy and efficiency in the detection 
of abnormally occurring patterns. The eBPF with BCC 
(BPF Compiler Collection) installed in the Linux server 
collects kernel-space telemetry, such as TCP connec-
tions and system calls, and sends them to the client for 
analysis. The configuration enables live metrics to be 
evaluated by the trained GRU model by combining learn-
ing with monitoring for efficient, low-latency detection 
of anomalies.

This shows the Linux server part of the envisioned 
Intrusion Detection System (IDS) that leverages eBPF for 
monitoring the system. The terminal reflects the exe-
cution required to load kernel-space eBPF programs. 
The printout attests that the eBPF program had been 
successfully loaded and its probes (e.g., for monitoring 
the tcp_connect and sys_enter events) attached suc-
cessfully to the Linux kernel. The server is now waiting, 
as reflected in the prompt “ Waiting for Windows cli-
ent to connect.”, waiting for incoming requests from the 
GRU-enabled client running under the Windows oper-
ating system. This configuration is commensurate with 
the system architecture, with the Linux server reading 
system-level statistics with the aid of eBPF and sending 

Fig. 2: Linux server part of the envisioned Intrusion Detection System (IDS).
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for in-kernel monitoring with deep learning inference 
for cybersecurity under cross-platform deployment.

The given training log shows a well-converged deep 
learning model over 20 epochs, with stable improve-
ments in both test and training measures. Training loss 
reduced from 0.1601 to 0.0783, and test loss reduced 
from 0.1133 to 0.0704, illustrating effective learning 
and generalization. Correspondingly, training accuracy 
increased from 95.09% to 97.42%, and test accuracy 
increased from 96.42% to 97.79%, with no evidence of 
overfitting and excellent generalization. Convergence 
is seen at epoch 16, when improvements taper off, 
supporting the possibility for the application of apply-
ing early stopping for reducing the training duration. 
Overall, the trend is one of stable and well-regularized 

training, as would be expected following deep learning 
best practices.

The system performance log across more than 20 
epochs is stable in terms of latency with minimal net-
work traffic during model training, with TCP sessions 
consistently near zero with only short transient spikes 
at epochs 3, 10, and 17, each with a single session. 
System call (syscall) activity varies by epoch, with one 
outlier at epoch 14 with 545,121 calls, which is much 
above the average of ~7,000 calls per epoch and likely 
represents a one-off system event or a logging arti-
fact. Throughout the variation, latency is consistently 
low at 3.0 ms throughout the training process, which 
suggests that changes in the volume of system calls or 
TCP sessions did not impact system responsiveness. 

Fig. 3: Client side of the illustrated Intrusion Detection System (IDS).

Fig. 4: Live telemetry gathered and streamed by the running Linux server.
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Table 1: Training and Testing Performance Metrics Across Epochs for Deep Learning Model.

timestamp epoch Tcp connections syscalls latency
5/27/2025 17:14 1 0 connections 7886 calls 3.0 ms
5/27/2025 17:15 2 0 connections 6305 calls 3.0 ms
5/27/2025 17:16 3 1 connections 9004 calls 3.0 ms
5/27/2025 17:16 4 0 connections 5208 calls 3.0 ms
5/27/2025 17:17 5 0 connections 6594 calls 3.0 ms
5/27/2025 17:18 6 0 connections 5471 calls 3.0 ms
5/27/2025 17:18 7 0 connections 22387 calls 3.0 ms
5/27/2025 17:19 8 0 connections 5571 calls 3.0 ms
5/27/2025 17:20 9 0 connections 5318 calls 3.0 ms
5/27/2025 17:21 10 1 connections 7607 calls 3.0 ms
5/27/2025 17:21 11 0 connections 4980 calls 3.0 ms
5/27/2025 17:22 12 0 connections 5622 calls 3.0 ms
5/27/2025 17:23 13 0 connections 5170 calls 3.0 ms
5/27/2025 17:23 14 0 connections 545121 calls 3.0 ms
5/27/2025 17:24 15 0 connections 5394 calls 3.0 ms
5/27/2025 17:25 16 0 connections 6489 calls 3.0 ms
5/27/2025 17:26 17 1 connections 5546 calls 3.0 ms
5/27/2025 17:26 18 0 connections 5041 calls 3.0 ms
5/27/2025 17:27 19 0 connections 5435 calls 3.0 ms
5/27/2025 17:28 20 0 connections 5048 calls 3.0 ms

Table 2: System-Level Runtime Monitoring Data: TCP 
Connections, Syscalls, and Latency per Epoch.

timestamp epoch cpu_% Mem %

5/27/2025 17:14 1 0.15 34.40%

5/27/2025 17:15 2 0.1 34.30%

5/27/2025 17:16 3 0.25 34.40%

5/27/2025 17:16 4 0.15 34.40%

5/27/2025 17:17 5 0.15 34.30%

5/27/2025 17:18 6 0.15 34.30%

5/27/2025 17:18 7 0.1 34.30%

5/27/2025 17:19 8 0.1 34.30%

5/27/2025 17:20 9 0 34.30%

5/27/2025 17:21 10 0.2 34.40%

5/27/2025 17:21 11 0.2 34.40%

5/27/2025 17:22 12 0.1 34.40%

5/27/2025 17:23 13 0.25 34.40%

5/27/2025 17:23 14 0.2 34.20%

5/27/2025 17:24 15 0.1 34.20%

5/27/2025 17:25 16 0.1 33.90%

5/27/2025 17:26 17 0.1 33.90%

5/27/2025 17:26 18 0 33.90%

5/27/2025 17:27 19 0.1 33.90%

5/27/2025 17:28 20 0.1 33.90%

Such stability suggests a properly isolated training pro-
cess with little network dependence and strong system 
performance consistent with standard procedures for 
stable machine learning jobs running under dedicated 
infrastructure.

The CPU usage trace above 20 epochs shows that the 
model training system had extremely low CPU usage 
and constant low usage of memory. The CPU usage was 
extremely low, from 0.0% to 0.25%, which suggests that 
the task was most likely running on the CPU or it was 
extremely I/O-bound with minimal CPU process requests. 
Memory usage was also very much in a low band, from 
34.4% to 33.9 % by epoch 20 to 33.9%, which is an even 
allocation of memory with no leakage or resource con-
tention. The figures testify to a light and well-tuned 
system configuration for training with a likely single/ded-
icated or well-separated setting, which is consistent with 
best practices for efficient deep learning pipelines.

Table 3: CPU and Memory Utilization Metrics 
per Epoch During Model Execution.

Accuracy Precision Recall F1_score

0.9778 0.9716 0.9778 0.9725
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The final performance results, Accuracy: 97.78%, 
Precision: 97.16%, Recall: 97.78%, and F1 Score: 97.25%, 
represent a very effective model with excellent overall 
performance in classification. The near-tie between pre-
cision and recall implies a good balance by the model 
in keeping false positives and false negatives low. The 
very high F1 score, the harmonic mean of precision and 
recall, also ensures excellent performance across both 
the measures of sensitivity and specificity. The tiny lead 
for recall over precision can be a good thing when it 
is preferable to classify rather than misclassify a posi-
tive instance, as would be the case in applications for 
which a missed positive instance is more expensive than 
a false alarm. These results demonstrate a solid and 
well-generalized model backed by a well-balanced and 
well-representative dataset.

Conclusion 

Overall, this study overcame the performance limita-
tions of conventional IDS by integrating GRU and eBPF. 
The proposed system successfully detected sophisti-
cated network intrusions by leveraging GRU-based deep 
learning’s temporal pattern discovery with the efficient 
packet filtering capability of eBPF.

The most notable findings indicated that the GRU-eBPF 
methodology achieved remarkable results with an accu-
racy of 97.78%, precision of 97.16%, recall of 97.78%, and 
an F1-score of 97.25%, with strong and stable anomaly 
detection. The methodology also achieved efficient 
resource usage, minimal latency, and stable system per-
formance, which highlights its practicability and suitabil-
ity in actual security situations.

This research is noteworthy in network security because 
it demonstrates a practical mechanism for coupling deep 
learning methodologies with kernel-space monitoring 
frameworks. Future work might investigate further eBPF 
constraint optimization to support even more sophisti-
cated machine learning designs and test the system in 
more comprehensive real-world networks to ensure its 
scalability and efficacy across a wider diversity of attack 
vectors.
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