
253National Journal of Antennas and Propagation, ISSN 2582-2659

Research Article

ISSN: 2582-2659 Vol. 7, No. 1, 2025 (pp. 253-261)
WWW.ANTENNAJOURNAL.COM

Enhancing Wireless Communication Security using
eBPF-Based Packet Filtering and GRU Models in

Software-Defined Antenna Networks
Ali Fadhil Hashim*

Faculty of Informatics Engineering, Urmia University, Urmia, Iran.

Abstract

Modern wireless communication systems, particularly those involving smart antennas and
software-defined radio networks, require efficient and secure data transmission under
increasing cybersecurity threats. Traditional intrusion detection mechanisms often fail
to scale with the dynamic demands of high-speed, low-latency wireless environments.
This paper proposes an integrated framework that combines Extended Berkeley Packet
Filter (eBPF)-based kernel-level packet telemetry with deep learning techniques, specif-
ically Gated Recurrent Unit (GRU) models, for real-time anomaly detection in wireless
communication systems. The approach leverages the CSE-CIC-IDS2018 dataset, processed
through random sampling, Z-score normalization, and ANOVA-F feature selection, to train
a GRU-based detection model capable of analyzing system-level metrics such as TCP ses-
sion anomalies and malformed packet flows within wireless infrastructures. Packet capture
and filtering are performed directly within the Linux kernel using eBPF, ensuring minimal
latency. This mechanism is especially suited for software-defined antenna systems, where
security must be maintained without compromising throughput. Experimental results show
that the proposed system achieves an accuracy of 97.78%, demonstrating its viability for
secure and adaptive intrusion detection in next-generation wireless networks.

Author’s e-mail: Af1432996@gmail.com

Author’s Orcid id: 0009-0003-4066-8654

How to cite this article: Hashim AF, Enhancing Wireless Communication Security using
eBPF-Based Packet Filtering and GRU Models in Software-Defined Antenna Networks,
National Journal of Antennas and Propagation, Vol. 7, No. 1, 2025 (pp. 253-261).

KEYWORDS:

Wireless
eBPF
GRU
Communication
Antennas

ARTICLE HISTORY:

Received 12-01-2025
Revised 22-03-2025
Accepted 14-04-2025

DOI:
https://doi.org/10.31838/NJAP/07.01.28

Introduction

Prior to the 1990s, packet monitoring and analysis
were carried out using the traditional packet filtering
mechanism, where all the packets would be duplicated
from the kernel space to the user space, thereby cre-
ating a packet processing latency. Steven McCanne
and Van Jacobson proposed a mechanism known as
Berkeley Packet Filter (BPF) between the years 1992–
1993, wherein not all the packets are duplicated from
the kernel space to the user space [1]. BPF was unlike
earlier systems in that it executed programs in a vir-
tual machine designed for register-based processors and
included per-application buffers for which no copy of
all information was necessary in order to make a deci-
sion [2], [3]. eBPF, Extended Berkeley Packet Filter,
enables user space applications to provide programs
that are executed in the Linux kernel and augment its
 functionality [4].

Today, DL technology is one of the favorite topics of
interest in the fields of machine learning, artificial intel-
ligence, data science, and analytics, as it can learn from
input data. Different corporations like Google, Microsoft,
etc., actively research it because it can provide remark-
able outcomes for various types of problems and clas-
sification datasets, and also for regression datasets [5].

An Intrusion Detection System (IDS) monitors network
traffic for suspicious activity and alerts when such activ-
ity is noted [6]. It is basically a program that inspects a
network or system completely or in part and reports any
harmful activities [7] .

Conventional IDS tends to fall short in the network
security performance requirements, especially for the
detection of advanced attacks like DoS and DDoS [8].
The current packet filters are neither flexible nor highly

mailto:Af1432996@gmail.com
https://orcid.org/0009-0003-4066-8654

Hashim AF
Enhancing Wireless Communication Security using eBPF-Based Packet Filtering and GRU Models

254 National Journal of Antennas and Propagation, ISSN 2582-2659

deploying ML-enabling security functions within the ker-
nel. Limitations are the complexity involved in imple-
mentation because of the eBPF’s substantial verifier
limitations, as well as the diminished flexibility in sup-
porting more intricate ML frameworks.

Qiu et al. (2024) [11] solved the problem of Advanced
Persistent Threat (APT) detection by introducing a
hybrid framework that uses eBPF for the collection of
low-level network traffic and a deep learning model
based on the Transformer for detection. The system col-
lects kernel-level network traffic and analyzes it with
a Transformer to discover APT actions. Tested with a
five-server simulated network under different intensi-
ties of attacks, the proof of concept achieved a 96.5%
detection accuracy and performed better than Snort in
terms of accuracy, latency, and resources. Some advan-
tages are high detection accuracy, low latency, and the
convenience of supporting complex threat traces. Some
disadvantages are dependency on pre-collected fea-
tures for input to the model and possible complexity
with deployment involving kernel-space and user-space
reconciliation.

Scholz et al. (2018) [12] Examined the implications of
Linux eBPF performance for filtering packets, which
surpassed the limitations of traditional centralized fire-
wall configurations. The study offered two case studies:
pre-kernel filtering using eXpress Data Path (XDP) and
application filtering with socket-attached eBPF. XDP
recorded up to 10 million packets per second (Mpps)
with just-in-time (JIT) compilation, which was up to
4× faster than iptables and nftables, with socket-level
filtering providing fine-grained, application-by-applica-
tion control without root access. Advantages included
enhanced flexibility, lower latency, and decentralized
rule management. Drawbacks included the presence of
JIT-induced latency outliers and the eBPF program size
limitations.

Tolkachova et al. (2023) [13] investigated the applica-
tion of extended Berkeley Packet Filter (eBPF) technol-
ogy for extending ransomware detection and monitoring
in real-time. Aiming at the limitations of conventional
signature-based antivirus solutions, a hybrid detection
framework was proposed using eBPF to analyze sys-
tem calls, process actions, and performance counters.
With a secure two-layered virtualized lab, a Support
Vector Machine (SVM) classifier, trained across more
than 100,000 events, achieved 95.2% accuracy, 94.8%
precision, and 95.5% recall for ransomware activity
detection. The method is characterized by high speed,
flexibility, and rich kernel-space visibility. Issues with

performant. To overcome the shortcomings a Gated
Recurrent Units (GRUs) in deep learning models and
extended Berkeley Packet Filter (eBPF) for packet filter-
ing are proposed. The GRU model, through its capacity
to learn temporal dependencies in sequential data with
minimal computational cost, facilitates effective detec-
tion of anomalies in network activities, with the help
of eBPF, which enables high-performance, tunable in-
kernel packet filtering.

Related Work

This section describes the necessary background on the
eBPF and deep learning.

Deokar et al. (2024) [9] performed an empirical analy-
sis to uncover the eBPF application development chal-
lenges, spurred by the rapid evolution of the ecosystem
and growing usage in the domain of networking and
observability. To counteract the absence of a system-
atic understanding, 743 Stack Overflow posts with the
tag “eBPF” were examined by the researchers, with
200 manually classified and the balance further classi-
fied using NLP techniques. The precision of the pipeline
was 84% with the application of XGBoost across various
aspects. The results also stated that 36% of the errors
are related to ecosystem primitives and 25% are related
to the mistakes of the verifier, reflecting the nuances
caused by the mismatches with documentation as well
as the rapidly changing tools. Advantages of their meth-
odology are a taxonomy of the development problems
and practical recommendations for enhancing tools.
Drawbacks are the possible biases with Stack Overflow
as the source of data and lower model accuracy with
complex categories. The paper is the first large-scale
quantitative analysis of eBPF development problems,
and the findings provide insight for directing future tool-
ing and documentation.

Gallego-Madrid et al. (2024) [10] Overcome the chal-
lenge of implementing intelligent traffic handling in
resource-constrained IoT scenarios. They implemented
a Multi-Layer Perceptron (MLP) neural network in the
Linux kernel using eBPF in order not to rely on ML han-
dling in the user space. By translating an MLP model to C
and making the necessary adjustments for eBPF limita-
tions, their implementation saved 97% in execution and
6% in CPU usage over the traditional alternative in the
user space. The approach proved stable in a commodity
hardware setting, specifically in a 6LoWPAN-based test-
bed for the purpose of detecting a “Hello Flood” type of
attack. The integration minimized latency and resource
requirements, demonstrating the possibility of directly

Hashim AF
Enhancing Wireless Communication Security using eBPF-Based Packet Filtering and GRU Models

255National Journal of Antennas and Propagation, ISSN 2582-2659

Denial of Service (DDoS), Web-based attacks, and inter-
nal network penetration. The attacking infrastructure
used for the simulation is made up of 50 machines, with
the victim organization represented by five depart-
ments, with 420 PCs and 30 servers. Each machine on
the victim side includes network traffic and log files.
The dataset also contains 80 network traffic features
extracted with CICFlowMeter-V3, facilitating in-depth
traffic analysis with anomaly detection [14].

Random sampling

In this process, each population’s member possesses an
equal and independent probability of being selected.
The sampling frame helps the researcher to choose
elements from the population randomly by generating
random numbers for each member [15]. In the pro-
posed system, the CSE-CIC-IDS2018 contains 16,232,943
records. Using random sampling, it was decreased to
1,000,0000 with the same class distribution as the data-
set, which has 83% normal and 17% attack.

Z-score normalization

Z-score is an excellent statistical index since it supports
the determination of the probability of a given value in
a normal distribution, as well as enables a comparison
of scores obtained from various normal distributions.
This is done through converting (or standardization) the
raw scores to a z-score so that the native distribution is
translated to a standard normal distribution. The input
value is normalized based on Equation 1 as follows [16]:

()
−

=
aij

Z ij
µ

σ

z(ij) = is the new value.
aij =is the old value.
μ =the mean of the column of the input value.
σ =the standard deviation of the column of the input
value.

Anova-F score

Analysis of Variance (ANOVA) is a statistical feature
selection algorithm for assessing the significance of
numeric features with regard to a categorical tar-
get variable. ANOVA is frequently used in classifica-
tion problems to identify whether the means of two or
more groups are statistically different. The F-value in
ANOVA measures the ratio of variance between groups
to variance within groups. The larger the F-value, the
closer the relationship between a feature and the target

implementation are the complexity of development,
dependency on hardware, and relative novelty of eBPF’s
application to ransomware scenarios.

Methodology

The CSE-CIC-IDS2018 dataset is utilized in the proposed
system for IDS. The dataset is used along with IDS and
eBPF for packet filtering. The proposed system is thor-
oughly discussed as given below and as illustrated in
Figure 1.

CSE-CIC-IDS2018

This dataset was created as a collaborative effort by the
Communications Security Establishment (CSE) and the
Canadian Institute for Cybersecurity (CIC) [11]. It uses
a profile-based methodology to produce cybersecu-
rity datasets systematically. The dataset captures rich
descriptions of multiple types of intrusions, together
with abstract distribution models for applications,
protocols, and lower-layer network entities. The data-
set contains seven different attack types: Brute-force,
Heartbleed, Botnet, Denial of Service (DoS), Distributed

CSE-CIC-2018

 Apply a random sample
(e.g. 1M rows)

Applying Z-score
normalization

 Building GRU model

 Feature selection
ANOVA F-score

 Splitting into train (70%)
and test (30%)

 Launching eBPF

Training

 Evaluation

30%

Fig. 1: Proposed system.

Hashim AF
Enhancing Wireless Communication Security using eBPF-Based Packet Filtering and GRU Models

256 National Journal of Antennas and Propagation, ISSN 2582-2659

and behavior monitoring is handy in security- sensitive or
performance-critical environments.

GRU (Gated Recurrent Unit)

is employed as a deep learning model to process the
time-series or sequential information like the system
metrics gathered through eBPF (e.g., TCP connections,
syscalls) for discovering the hidden patterns that might
signify the regular or malicious activity. The GRU model
is trained for 20 epochs, with system metrics (e.g., TCP
connections, syscalls, CPU usage) gathered through an
eBPF-supporting Linux server. The metrics are captured
during training as well as the testing phase, providing
visibility of system performance during model training.
The trained GRU model is then checked for accuracy,
precision, recall, and F1-score over the test corpus.
The approach supports the merging of the offline data
with live telemetry from the system for enhancing the
robustness of the model as well as for facilitating the
performance evaluation as per security awareness.

Evaluation

eBPF gathers metrics such as TCP connections, syscall
counts, and CPU usage. Runtime metrics provide a fur-
ther frame of analysis for assessing not only the accu-
racy and F1-score of the model, but also the resource
usage during the learning process. Once trained, the
predictive power of the model is measured by accuracy,
precision, recall, and F1 score following regular cyber-
security protocols for evaluation. This combined pipe-
line enables researchers to test the GRU’s detection
capacity in realistic monitored conditions.

+
=

+ + +
TP TN

Accuracy
TP TN FP FN

=
+

TP
Precision

TP FP

=
+

TP
Recall

TP FN

1 2
precision Recall

F Score
precision Recall

×
= ×

+

Implementation and Results

The system proposed employs an IDS via a GRU running
on a Windows client (with PyCharm) for model training
and a Linux server with Extended Berkeley Packet Filter
(eBPF) for monitoring the system. The GRU model for

variable. The score determines whether the means for
different classes (as defined by the target vector) are
different when single numerical features partition the
data [17].

• Steps for ANOVA-based Feature Selection:
1. Select all features from the original dataset.
2. Compute the ANOVA F-score between each feature

i and the target variable

=
Variance between groups
Variance within groups

F

()2
1

)

Y Y
Variance between group

 1(
s =

−
=

−
∑

n

ii

K

= =
−

=
−

∑ ∑ 2
1 1

()
V

)
ariance within g

(
roups

k ni

iji j
Y Y

N K

• K: Number of groups (or classes)
• N: Total number of observations
• ni: Number of observations in group i
• Ȳi: Mean of group i
• Ȳ: Overall (grand) mean
• Yij: Value of the j, observation in group i

Data splitting

The dataset is divided into two parts for model training
and testing:

1. Training Data (70%): This data is used to train the
GRU

2. Incorporate eBPF (Extended Berkeley Packet Filter)
monitoring,

3. Testing Data (30%): Assesses the model’s perfor-
mance on new data, ensuring its ability to generalize
effectively.

eBPF (extended Berkeley Packet Filter)

eBPF is utilized to monitor the activity of the system
by attaching kernel probes to monitor TCP connect
attempts (tcp_connect) and system calls (sys_enter) by
process ID. It captures the low-level metrics in using BCC
(BPF Compiler Collection) and stores them within hash
maps, which facilitates efficient and lightweight moni-
toring of the system’s behavior. The aggregated statistics
are then pushed to a connected client, giving insight into
system usage and performance. Real-time performance

Hashim AF
Enhancing Wireless Communication Security using eBPF-Based Packet Filtering and GRU Models

257National Journal of Antennas and Propagation, ISSN 2582-2659

them to the client for anomaly detection with deep
learning, leveraging the trained GRU model.

This is the Windows-based client side of the illustrated
Intrusion Detection System (IDS), which is running
the GRU training process in PyCharm with the help of
TensorFlow. The terminal shows successful data loading
and model initialization, followed by a “Connected to
eBPF server” confirmation message, which affirms an
established connection with the Linux server monitoring
system metrics through eBPF.

The following is a screenshot of the live telemetry
gathered and streamed by the running Linux server, an
essential component of the proposed architecture for
an IDS. Once the Windows client (192.168.181.1) is suc-
cessfully connected, the server starts streaming time-
stamped system indicators in intervals. The indicators
are centered around metrics such as tcp_connections,
syscalls, cpu_percent, statistics for memory usage,
network throughput (bytes_sent_per_sec, bytes_recv_
per_sec), and latency (tcp_latency). The measures are
obtained via eBPF probes and represent kernel-space
monitoring in real-time. The measures are streamed to
the client running Windows, where the GRU model is
used to process them for the detection of anomalies, a
representative application of the practical use of eBPF

the client is trained with the CSE-CIC-IDS2018 dataset
through preprocessing with random sampling, Z-score
normalization, and ANOVA F-score-based feature reduc-
tion to increase accuracy and efficiency in the detection
of abnormally occurring patterns. The eBPF with BCC
(BPF Compiler Collection) installed in the Linux server
collects kernel-space telemetry, such as TCP connec-
tions and system calls, and sends them to the client for
analysis. The configuration enables live metrics to be
evaluated by the trained GRU model by combining learn-
ing with monitoring for efficient, low-latency detection
of anomalies.

This shows the Linux server part of the envisioned
Intrusion Detection System (IDS) that leverages eBPF for
monitoring the system. The terminal reflects the exe-
cution required to load kernel-space eBPF programs.
The printout attests that the eBPF program had been
successfully loaded and its probes (e.g., for monitoring
the tcp_connect and sys_enter events) attached suc-
cessfully to the Linux kernel. The server is now waiting,
as reflected in the prompt “ Waiting for Windows cli-
ent to connect.”, waiting for incoming requests from the
GRU-enabled client running under the Windows oper-
ating system. This configuration is commensurate with
the system architecture, with the Linux server reading
system-level statistics with the aid of eBPF and sending

Fig. 2: Linux server part of the envisioned Intrusion Detection System (IDS).

Hashim AF
Enhancing Wireless Communication Security using eBPF-Based Packet Filtering and GRU Models

258 National Journal of Antennas and Propagation, ISSN 2582-2659

for in-kernel monitoring with deep learning inference
for cybersecurity under cross-platform deployment.

The given training log shows a well-converged deep
learning model over 20 epochs, with stable improve-
ments in both test and training measures. Training loss
reduced from 0.1601 to 0.0783, and test loss reduced
from 0.1133 to 0.0704, illustrating effective learning
and generalization. Correspondingly, training accuracy
increased from 95.09% to 97.42%, and test accuracy
increased from 96.42% to 97.79%, with no evidence of
overfitting and excellent generalization. Convergence
is seen at epoch 16, when improvements taper off,
supporting the possibility for the application of apply-
ing early stopping for reducing the training duration.
Overall, the trend is one of stable and well-regularized

training, as would be expected following deep learning
best practices.

The system performance log across more than 20
epochs is stable in terms of latency with minimal net-
work traffic during model training, with TCP sessions
consistently near zero with only short transient spikes
at epochs 3, 10, and 17, each with a single session.
System call (syscall) activity varies by epoch, with one
outlier at epoch 14 with 545,121 calls, which is much
above the average of ~7,000 calls per epoch and likely
represents a one-off system event or a logging arti-
fact. Throughout the variation, latency is consistently
low at 3.0 ms throughout the training process, which
suggests that changes in the volume of system calls or
TCP sessions did not impact system responsiveness.

Fig. 3: Client side of the illustrated Intrusion Detection System (IDS).

Fig. 4: Live telemetry gathered and streamed by the running Linux server.

Hashim AF
Enhancing Wireless Communication Security using eBPF-Based Packet Filtering and GRU Models

259National Journal of Antennas and Propagation, ISSN 2582-2659

Table 1: Training and Testing Performance Metrics Across Epochs for Deep Learning Model.

timestamp epoch Tcp connections syscalls latency
5/27/2025 17:14 1 0 connections 7886 calls 3.0 ms
5/27/2025 17:15 2 0 connections 6305 calls 3.0 ms
5/27/2025 17:16 3 1 connections 9004 calls 3.0 ms
5/27/2025 17:16 4 0 connections 5208 calls 3.0 ms
5/27/2025 17:17 5 0 connections 6594 calls 3.0 ms
5/27/2025 17:18 6 0 connections 5471 calls 3.0 ms
5/27/2025 17:18 7 0 connections 22387 calls 3.0 ms
5/27/2025 17:19 8 0 connections 5571 calls 3.0 ms
5/27/2025 17:20 9 0 connections 5318 calls 3.0 ms
5/27/2025 17:21 10 1 connections 7607 calls 3.0 ms
5/27/2025 17:21 11 0 connections 4980 calls 3.0 ms
5/27/2025 17:22 12 0 connections 5622 calls 3.0 ms
5/27/2025 17:23 13 0 connections 5170 calls 3.0 ms
5/27/2025 17:23 14 0 connections 545121 calls 3.0 ms
5/27/2025 17:24 15 0 connections 5394 calls 3.0 ms
5/27/2025 17:25 16 0 connections 6489 calls 3.0 ms
5/27/2025 17:26 17 1 connections 5546 calls 3.0 ms
5/27/2025 17:26 18 0 connections 5041 calls 3.0 ms
5/27/2025 17:27 19 0 connections 5435 calls 3.0 ms
5/27/2025 17:28 20 0 connections 5048 calls 3.0 ms

Table 2: System-Level Runtime Monitoring Data: TCP
Connections, Syscalls, and Latency per Epoch.

timestamp epoch cpu_% Mem %

5/27/2025 17:14 1 0.15 34.40%

5/27/2025 17:15 2 0.1 34.30%

5/27/2025 17:16 3 0.25 34.40%

5/27/2025 17:16 4 0.15 34.40%

5/27/2025 17:17 5 0.15 34.30%

5/27/2025 17:18 6 0.15 34.30%

5/27/2025 17:18 7 0.1 34.30%

5/27/2025 17:19 8 0.1 34.30%

5/27/2025 17:20 9 0 34.30%

5/27/2025 17:21 10 0.2 34.40%

5/27/2025 17:21 11 0.2 34.40%

5/27/2025 17:22 12 0.1 34.40%

5/27/2025 17:23 13 0.25 34.40%

5/27/2025 17:23 14 0.2 34.20%

5/27/2025 17:24 15 0.1 34.20%

5/27/2025 17:25 16 0.1 33.90%

5/27/2025 17:26 17 0.1 33.90%

5/27/2025 17:26 18 0 33.90%

5/27/2025 17:27 19 0.1 33.90%

5/27/2025 17:28 20 0.1 33.90%

Such stability suggests a properly isolated training pro-
cess with little network dependence and strong system
performance consistent with standard procedures for
stable machine learning jobs running under dedicated
infrastructure.

The CPU usage trace above 20 epochs shows that the
model training system had extremely low CPU usage
and constant low usage of memory. The CPU usage was
extremely low, from 0.0% to 0.25%, which suggests that
the task was most likely running on the CPU or it was
extremely I/O-bound with minimal CPU process requests.
Memory usage was also very much in a low band, from
34.4% to 33.9 % by epoch 20 to 33.9%, which is an even
allocation of memory with no leakage or resource con-
tention. The figures testify to a light and well-tuned
system configuration for training with a likely single/ded-
icated or well-separated setting, which is consistent with
best practices for efficient deep learning pipelines.

Table 3: CPU and Memory Utilization Metrics
per Epoch During Model Execution.

Accuracy Precision Recall F1_score

0.9778 0.9716 0.9778 0.9725

Hashim AF
Enhancing Wireless Communication Security using eBPF-Based Packet Filtering and GRU Models

260 National Journal of Antennas and Propagation, ISSN 2582-2659

3. B. Vinod Kumar and S. Aravind, “Aware and Usage of
Information Communication Technology among the MS
Ramaiah Institute of Technology, Bangalore: A Study,”
Indian Journal of Information Sources and Services, vol.
9, no. 2, pp. 122–124, May 2019, https://doi.org/10.51983/
ijiss.2019.9.2.610.

4. S. Bhat and H. Shacham, “Formal Verification of the Linux
Kernel eBPF Verifier Range Analysis,” 2022.

5. I. H. Sarker, “Deep Learning: A Comprehensive Overview
on Techniques, Taxonomy, Applications and Research
Directions,” Nov. 01, 2021, Springer. https://doi.
org/10.1007/s42979-021-00815-1.

6. S. Kamolova, H.M. Abbas, D. Abdullayev, C.G,
I. Matkarimov, and L. Sachdeva, “Automated disease
identification in aquaculture utilizing underwater imaging
and YOLOV10 network,” International Journal of Aquatic
Research and Environmental Studies, vol. 5, no. S1,
pp. 87–94, Jun. 2025, https://doi.org/10.70102/IJARES/
V5S1/5-S1-10.

7. H. J. Hadi et al., “iKern: Advanced Intrusion Detection
and Prevention at the Kernel Level Using eBPF,”
Technologies (Basel), vol. 12, no. 8, Aug. 2024, https://
doi.org/10.3390/technologies12080122.

8. A. Naaman, “Machine Learning for Arabic Fake News
Detection with Word Embedding During Covid-19
Pandemic,” 2022. [Online]. Available: https://www.
researchgate.net/publication/364122131

9. M. Deokar, J. Men, L. Castanheira, A. Bhardwaj, and T. A.
Benson, “An Empirical Study on the Challenges of eBPF
Application Development,” in eBPF 2024 - Proceedings of
the ACM SIGCOMM 2024 Workshop on eBPF and Kernel
Extensions, Part of: SIGCOMM 2024, Association for
Computing Machinery, Inc, Aug. 2024, pp. 1–8. https://
doi.org/10.1145/3672197.3673429.

10. J. Gallego-Madrid, I. Bru-Santa, A. Ruiz-Rodenas, R.
Sanchez-Iborra, and A. Skarmeta, “Machine learning-pow-
ered traffic processing in commodity hardware with
eBPF,” Computer Networks, vol. 243, Apr. 2024, https://
doi.org/10.1016/j.comnet.2024.110295.

11. R. Qiu, H. Luo, S. Jing, X. Li, and Y. Li, “An APT Attack
Detection Method Based on eBPF and Transformer,”
International Journal of Network Security, vol. 26, no. 6,
pp. 964–972, 2024, https://doi.org/10.6633/IJNS.202411.

12. [12] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K.
Lesiak, and G. Carle, “Performance Implications of Packet
Filtering with Linux eBPF,” in 2018 30th International
Teletraffic Congress (ITC 30), 2018, pp. 209–217. https://
doi.org/10.1109/ITC30.2018.00039.

13. A. Tolkachova, D. Zhuravchak, A. Piskozub, and V.
Dudykevych, Monitoring ransomware with Berkeley
Packet Filter (BPF). 2023.

14. I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intru-
sion traffic characterization,” in ICISSP 2018 - Proceedings
of the 4th International Conference on Information
Systems Security and Privacy, SciTePress, 2018, pp. 108–
116. https://doi.org/10.5220/0006639801080116.

15. T.S. Nanjundeswaraswamy and S. Divakar, “Determination
of Sample Size and Sampling Methods in Applied
Research,” Proceedings on Engineering Sciences, vol. 3,
no. 1, pp. 25–32, Mar. 2021, https://doi.org/10.24874/
pes03.01.003.

The final performance results, Accuracy: 97.78%,
Precision: 97.16%, Recall: 97.78%, and F1 Score: 97.25%,
represent a very effective model with excellent overall
performance in classification. The near-tie between pre-
cision and recall implies a good balance by the model
in keeping false positives and false negatives low. The
very high F1 score, the harmonic mean of precision and
recall, also ensures excellent performance across both
the measures of sensitivity and specificity. The tiny lead
for recall over precision can be a good thing when it
is preferable to classify rather than misclassify a posi-
tive instance, as would be the case in applications for
which a missed positive instance is more expensive than
a false alarm. These results demonstrate a solid and
well-generalized model backed by a well-balanced and
well-representative dataset.

Conclusion

Overall, this study overcame the performance limita-
tions of conventional IDS by integrating GRU and eBPF.
The proposed system successfully detected sophisti-
cated network intrusions by leveraging GRU-based deep
learning’s temporal pattern discovery with the efficient
packet filtering capability of eBPF.

The most notable findings indicated that the GRU-eBPF
methodology achieved remarkable results with an accu-
racy of 97.78%, precision of 97.16%, recall of 97.78%, and
an F1-score of 97.25%, with strong and stable anomaly
detection. The methodology also achieved efficient
resource usage, minimal latency, and stable system per-
formance, which highlights its practicability and suitabil-
ity in actual security situations.

This research is noteworthy in network security because
it demonstrates a practical mechanism for coupling deep
learning methodologies with kernel-space monitoring
frameworks. Future work might investigate further eBPF
constraint optimization to support even more sophisti-
cated machine learning designs and test the system in
more comprehensive real-world networks to ensure its
scalability and efficacy across a wider diversity of attack
vectors.

References

1. A. Sadiq, H. J. Syed, A. A. Ansari, A. O. Ibrahim, M.
Alohaly, and M. Elsadig, “Detection of Denial of Service
Attack in Cloud Based Kubernetes Using eBPF,” Applied
Sciences (Switzerland), vol. 13, no. 8, Apr. 2023, https://
doi.org/10.3390/app13084700.

2. N. Hedam, eBPF - From a Programmer’s Perspective.
2023. https://doi.org/10.13140/RG.2.2.33688.11529/4.

Hashim AF
Enhancing Wireless Communication Security using eBPF-Based Packet Filtering and GRU Models

261National Journal of Antennas and Propagation, ISSN 2582-2659

communication. SCCTS Journal of Embedded Systems
Design and Applications, 1(1), 13-18. https://doi.
org/10.31838/ESA/01.01.03

20. Kavitha, M. (2024). Advances in wireless sensor net-
works: From theory to practical applications. Progress in
Electronics and Communication Engineering, 1(1), 32–37.
https://doi.org/10.31838/PECE/01.01.06

21. Sathish Kumar, T. M. (2023). Wearable sensors for flex-
ible health monitoring and IoT. National Journal of RF
Engineering and Wireless Communication, 1(1), 10-22.
https://doi.org/10.31838/RFMW/01.01.02

22. Antoniewicz, B., & Dreyfus, S. (2024). Techniques on con-
trolling bandwidth and energy consumption for 5G and 6G
wireless communication systems. International Journal of
Communication and Computer Technologies, 12(2), 11-20.
https://doi.org/10.31838/IJCCTS/12.02.02

16. M. Z. Al-Faiz, A. A. Ibrahim, and S. M. Hadi, “The effect
of Z-Score standardization (normalization) on binary input
due the speed of learning in back-propagation neural net-
work,” Iraqi Journal of Information & Communications
Technology, vol. 1, no. 3, pp. 42–48, Feb. 2019, https://
doi.org/10.31987/ijict.1.3.41.

17. K. Dissanayake and M. G. M. Johar, “Comparative
study on heart disease prediction using feature selec-
tion techniques on classification algorithms,” Applied
Computational Intelligence and Soft Computing, vol.
2021, 2021, https://doi.org/10.1155/2021/5581806.

18. James, A., Thomas, W., & Samuel, B. (2025). IoT-enabled
smart healthcare systems: Improvements to remote
patient monitoring and diagnostics. Journal of Wireless
Sensor Networks and IoT, 2(2), 11-19.

19. Sadulla, S. (2024). A comparative study of antenna
design strategies for millimeter-wave wireless

	_GoBack
	_Hlk199247668
	_Hlk199248713

