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Abstract

Biomedical imaging, like any imaging below the surface, leans heavily on the use of elec-
tromagnetic sensing. This method enables imaging through different materials. Also, there 
is no biological safety concern because of ionizing radiation. Nonetheless, classical inverse 
EM modeling is still afflicted by severe ill-posedness, excessive noise vulnerability, and high 
computational costs, particularly in more diverse and intricate areas. The ill-posedness 
micromodels that survive in EM imaging space are those that are linked with deep learning 
enabled feature carving as well as physics-supported EM inversion. The framework core is 
built with convolutional neural networks (CNNs) on the CST studio suite, HFSS, and other 
full-wave solvers to which the CNNs were trained on large, accurate parameter sets. The 
CNNs recover the distribution of spatial permittivity and span the supersonic embedded 
anomalies. The increase in resistance to interference that traditional iterative solvers suf-
fer from within the EM domain is the main conclusion from the experimental data geo-
metric and phantom reconstructions conducted with the straightforward deep learning 
models. The entire framework is scalable, interpretable, and easily deployable to solve 
practical problems such as health monitoring and medical imaging, and also infrastructure, 
geological, and surgical EM surveying. This is the main contribution of the work in this 
direction.
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Introduction

Electromagnetic (EM) sensing has demonstrated its 
capability to achieve safe, multipurpose applications in 
both the exploration of buried utilities and soil condi-
tions, as well as in biomedicals. The main advantage is 
that EM waves interact with material electrical proper-
ties more sensitively than other methods, allowing func-
tional images to be obtained at greater depths without 
ionizing radiation.[1]

Although promising, the main difficulty in EM sensing 
remains the solution of the inverse problem: recon-
structing material properties from the measurements 
of scattered fields.[2] Inverse solvers that use iterative 

techniques, for example, Born approximation, FDTD, 
or adjoint field methods, are both computationally 
demanding and vulnerable to noise as well as boundary 
and initial guess problems. These problems have conse-
quently prevented real-time or portable EM imaging sys-
tems from being realized.

Lately, improvements in artificial intelligence, notably 
deep learning techniques, have disrupted fields that 
require pattern recognition and nonlinear regression.[15] 
The integration of neural networks into EM inverse solv-
ers through AI-enabled EM sensing indicates a route 
to substantially speed up reconstruction and boost 
the handling of noisy data.[4] On the other hand, most 
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In relation to biomedicine, References[13,14] presented a 
hybrid method which integrates autoencoders with optimi-
zation methods for microwave breast imaging. This method 
successfully tackled noise and posed ill-conditioned 
reconstructions; however, it had difficulties maintaining 
high-frequency information from deeper tissue, causing 
the images to appear blurry. Also, Reference[15] presented 
a GAN framework for imaging with subsurface radar. Even 
with increased sharpness, the GAN sometimes introduced 
inaccurate, hallucinated imaging artifacts when SNR was 
low, reducing the model’s reliability.[16,17]

In essence, these results point to inherent shortcom-
ings present in both conventional and learning-based 
inverse approaches.[18,19] Remaining issues are in the 
simultaneous optimization of image quality, computa-
tional burden, and meaningful visual interpretation in 
multiple application settings. This demonstrates the 
crucial requirement for a unified approach that com-
bines machine learning with physical models to realize 
dependable real-time EM imaging.

The existing literature shows that an essential gap in 
research persists: At present, artificial intelligence meth-
ods generally fail to adapt in real time or generalize well, 
especially when imaging conditions differ, for example, 
between soil and tissue. Our solution addresses this 
issue by integrating EM physics limits with deep learning, 
resulting in robust, interpretable, and fast inversion.[20–22]

Proposed Methodology

EM Forward Solver Integration

Our approach for modeling EM wave interactions with 
subsurface or biological structures was to utilize a 
hybrid forward simulation framework, consisting of CST 
Studio Suite for soft tissue and biomedical phantoms 
as well as Ansys HFSS for geophysical structures. CST 

present models are designed for particular tasks, offer 
little generalizability, and ignore complete exploitation 
of EM physics rules.

This research is aimed at constructing an AI-supported 
EM inverse modeling framework that is general and 
effective for both geophysical and biomedical uses, 
while allowing rapid and precise image restoration.[5] 
Our method combines deep convolutional neural net-
works (CNNs)[6] with EM solvers to provide meaningful 
interpretations of the EM field and link them to realistic 
dielectric property distributions (Figure 1).

Literature Review

During the past years, the majority of advancements in 
EM inverse modeling have occurred within two princi-
pal directions: The two main paths in recent EM inverse 
modeling involve the implementation of traditional 
physics-based optimization strategies and contemporary 
AI-driven methodologies.[7,8] applied the FDTD method in 
combination with a Born iterative solver while attempt-
ing to recover dielectric structures during soil-based 
subsurface imaging masking. The results were good, 
although they were methodically expensive, often need-
ing 300 iterations a scan, as well as noise artifact sen-
sitive. But, Reference[9] trained a CNN with synthetic 
radar data[10] in order to estimate subsurface permit-
tivity maps. Inference with this AI model was notably 
rapid, but its performance degraded when encounter-
ing data outside the training range, thus revealing a lack 
of strong generalization. To satisfy the requirement for 
physical accuracy, References[11,12] established physics-
informed neural networks (PINNs) that include Maxwell’s 
equations as part of the network learnings. Even though 
the results were physically realistic, applying this 
method to more complicated, multilayered media was 
restricted by scalability problems linked to high dimen-
sional parameter interactions.

Fig. 1: General AI-driven inverse imaging pipeline.
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Table 1: Comparative analysis of EM inversion techniques.

Author/Year Technology Used Dataset/Experiment Results Limitations

Zhou et al., 2020 Born Iterative 
Solver

CST simulations (soil) Accurate reconstructions 
but slow convergence

High computation time

Bui et al., 2021 Deep CNN Synthetic 2D radar data Fast inference, moderate 
resolution

Weak generalization

Wang & Liu, 2022 PINN Maxwell-constrained dataset Physics-consistent output Struggled with layered media

Tang et al., 2023 Autoencoder + 
Optim.

Microwave breast phantom Noise-robust but blurry in 
deep layers

Loss of detail in depth

Kim et al., 2021 GAN framework Subsurface radar imaging High visual sharpness Possible hallucinated 
features

Proposed CNN + EM Physics 
Fusion

CST + HFSS + Phantom data High accuracy, real-time 
output

Slight smoothing at low-res 
edges

was utilized to build 2D and 3D simulation phantoms 
depicting anatomical organ shapes such as layered 
breast tissue, and HFSS modeled soil environments 
with multiple layers that contained embedded objects 
made from plastic or metal. Propagation of EM waves 
is modeled in both tools for frequencies between 500 
MHz and 10 GHz.

Figure 2 illustrates in detail the EM simulation environ-
ments constructed by CST Studio Suite and Ansys HFSS. 
It shows where the transmitter and receiver antennas 
are located, the movement of EM waves through a 
variety of heterogeneous materials, and the differing 
dielectric properties in varied regions of the model. 
In bioengineering simulations, the segregated layered 
structures of soft tissues and glandular regions are 
described, whereas for geophysical studies, soil objects 
are embedded within stratified layers. It also presents 
a visual explanation of how tetrahedral meshing is used 
for anatomical models and structured grids are utilized 
for soil stratification, together with the addition of PML 
bounding surfaces to imitate free-space communication. 
This computational setting is essential for developing 

datasets of high realism used to train and evaluate 
AI-driven inverse models.

Deep Inverse Network Architecture

The second module we present is a CNN architecture 
explicitly designed to address the EM inverse problem. 
Input for the model comprises numerous frequency 
maps of both the magnitude and phase of the received 
field. Specifically, the design consists of an encoder–
decoder architecture enhanced with:

•	Residual learning blocks.
•	Dilated convolutions are included to facilitate the 

assessment of long-range dependencies.
•	To ensure the retention of image details, the design 

applied U-Net-type skip connections.

To achieve a good balance between error reduction in 
magnitude and phase and the preservation of image fea-
tures, we trained the CNN with both supervised regres-
sion and structural similarity loss.

Figure 3 outlines the sequence from input preprocessing 
through encoding–decoding, multiple feature fusion, and 
the final permittivity map output. Each box indicating a 
layer includes its dimensionality, filter dimensions, and 
the name of the activation function.

Mathematical Formulation

Reconstructing a spatially dependent dielectric distribu-
tion, ε(x, y), from scattered field measurements is the 
principal purpose of the EM inverse problem. This prob-
lem is fundamentally related to Maxwell’s equations; the 
mathematical description of how time-harmonic electric 
and magnetic fields interact with continuously varying 
permittivity and conductivity in media.

Fig. 2: Electromagnetic simulation  
environment layout.
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In this case, it is reasonable to suppose that the CNN 
is able to produce good permittivity maps, even at the 
borders of the simulation domain.

It follows that the CNN can give reasonable permittivity 
maps even on the edges of the simulation domain.

Adjoint Physics Loss 

We built a physics-based loss function that uses as a res-
idue the permittivity prediction in a copy of the Maxwell 
solver that performs the forward validation. 

	
22

Adj x 0 r 2
f

L  ̂E   ˆk  ̂  E= ∇ − ε∑ 	 (3) 

Employing this form of the adjoint loss guarantees that 
the neural network predictions retain the most import-
ant physical dynamics of the problem, even in the case 
of data scarcity.

Total Loss Function

More specifically, the aggregate loss of the inverse 
model is a combination of data-driven loss and physics-
based loss, weighted according to their importance.

	 Ltotal = αLMSE + βLSSIM+γLBC + δLAdj 	 (4)

The optimum weights are: α=0.5, β=0.3, γ=0.1,  
and δ=0.

The propagation of time-harmonic EM fields is governed 
by the vector Helmholtz equation in the frequency 
domain:

	 ∇×∇×E(x,y,f)−k0
2εr(x,y)E(x,y,f)=0	 (1)

where:
•	In other words, E(x,y,f ) is just the electric field 

measurement at position (x,y) and having a frequency 
of f.

•	εr(x,y)=ε(x,y)/ε0 is the relative permittivity.
•	k0=ω/c is the free-space wavenumber.

The aim of the inverse problem is to calculate εr(x,y) 
using measurements of scattered fields, Eobs, which 
are frequently accumulated at several positions and 
frequencies. Such estimation becomes fundamentally 
ill-conditioned, particularly when the data are corrupted 
by noise or incompleteness.

Boundary Condition Modeling

These PMLs are placed around the simulation domains in 
order to absorb outwardly radiated waves and remove 
unrealistic reflections, thus providing “open-” domain 
simulation “.” As for training, the imposed errors, for 
edge breaches in the simulation, attract some form of 
punitive training for those defined borders. 

	
2

BC 2
x   

L     (x)   PMLˆ
∈∂Ω

= ε −ε∑ 	 (2)

Fig. 3: Deep inverse convolutional neural network architecture.
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The above formulation offers pixel-wise precision and 
smooth incorporation of physical phenomena. 

Figure 4 gives the training and validation loss over 100 
epochs. The proposed network error curve demon-
strates high convergence with few overfitting rates com-
pared to the baseline shallow CNN.

This three-leveled structure—physics simula-
tion, deep inverse learning, and mathematical 

Algorithm 1: Pseudo code for AI-Driven 
Inverse Imaging Inference Pipeline

Input: Map of EM fields for given multiple 
frequencies Eobs, pretrained model of CNN fθ 
Output: Predicted dielectric map “ε” ̂ (x,y)
1. Normalize input field maps (magnitude and phase) 
across all frequencies. 
2. Stack data into a multichannel input tensor (5 
frequencies × 2 = 10 channels).
3. Feed input tensor into CNN model f_θ.
4. Obtain predicted continuous-valued permittivity 
distribution.
5. Post-process output: apply scaling, enforce physical 
constraints, and filter noise.

Fig. 4: Permittivity prediction error versus epochs.

embedding—establishes a universal basis for the solution 
of complex EM inverse problems for biomedical and geo-
physical imaging.

Experimental Setup

Data Generation and Phantom Design

In order to properly train and assess the AI-driven inverse 
modeling framework, we created synthetic datasets by 
means of two full-wave EM solvers. They are CST Studio 
Suite and Ansys HFSS. These simulators were employed 
to simulate real propagation in biomedical and geophys-
ical situations.

•	Biomedical Domain: 2D breast phantoms were pro-
duced consisting of layered structures in the repre-
sentation of skin, adipose, glandular, and tumorous 
tissues. The dielectric properties of each layer were 
assigned reasonable values, frequency dependent in 
addition to the position of the anatomical structure.

•	Subsurface Domain: Stratified soil phantoms that con-
tain metallic and dielectric inclusions (i.e., pipes, 
voids, and plastic materials) were simulated. Soil lay-
ers were spatially heterogeneous with conductivity 
and permittivity.

For all scenarios, field maps were computed at a series 
of frequency points (500 MHz to 5 GHz) with magni-
tude and phase data. Auxiliary ground-truth dielectric 
maps have been exported as labeled material masks for 
supervision objectives in training.

In this diagram, model CST/HFSS simulation setups are 
demonstrated. Figures 5A,B are cross-sectional ana-
tomical breast phantoms and layered soil models with 
embedded targets. Permeability variations across media 
are represented by color-coded dielectric maps.

Training Framework and Tools

The neural inverse modeling framework was then imple-
mented on TensorFlow 2.0, which was trained on NVIDIA 
A100 GPUs.[3] The data were splitted into to 70%, 15% 
for training, validation and testing, respectively. Each 
input sample was a stack of 10 channels comprising 5 
frequency slices (each with a real and imaginary com-
ponent) in free space in a cylindrical coordinate system.

Adam optimizer was used to optimize CNN[22]; learn-
ing rate was set as 0.001, and batch size was set as 16. 
Mean squared error (MSE) and structural similarity index 
(SSIM) loss function was combined in the ratio of 0.7 and 

Table 2: Key CNN hyperparameters 
and architecture choices.

Component Configuration

Input Channels 10 (5 frequency slices × 2: mag + phase)

Architecture 15 layers (including residual blocks, skip 
connections)

Activation ReLU (hidden), Tanh (final)

Loss Function MSE + SSIM + BC + Adjoint

Optimizer Adam (learning rate = 0.001)

Batch Size 16
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Table 3: Dataset and phantom configuration parameters.

Domain Solver Used Size (px) Frequency Range # Samples Materials Modeled

Biomedical CST 256 × 256 0.5–5 GHz 5,000 Skin, fat, tumor, gland

Subsurface HFSS 256 × 256 1–10 GHz 5,000 Soil, pipe (metal), void

0.3, to maintain pixel-level accuracy and perceptual cor-
respondence. The early termination was employed to 
prevent overfitting of 100 epochs training.

On this chart is the development of MSE and SSIM loss 
during training epochs. The proposed CNN converged 
rapidly in 30 epochs, and the loss was stabilized without 
overfitting for the validation, which implies robust gen-
eralization both in biomedical and geophysical datasets.

Figure 7 depicts the pipeline that consists of data load-
ing, augmentation, model inference, backpropagation 
and check pointing. Streaming and acceleration of GPUs 

is highlighted for high throughput model optimization 
with the use of real-time data streaming.

This experimental configuration guarantees robust infer-
ence of the trained model on difficult, multiscale EM 
imaging problems from different fields confirming the 
cross-domain adaptability and operational viability of 
the model.

Results and Discussion

Not only were the results of the proposed AI-driven 
inverse modeling framework superior to those of classi-
cal EM inverter solvers but also state-of-the-art AI alter-
natives. On both biomedical and geophysical test sets, 

Fig. 5: Phantom model configurations for biomedical and geophysical domains. (A) 2D cross-sectional anatomical 
breast phantom with embedded malignant inclusions, used for validating microwave imaging simulations.
(B) 2D multilayered soil phantom with buried metallic and nonmetallic targets, designed for subsurface 

electromagnetic sensing analysis.
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the evaluation metrics of dice coefficient, SSIM, infer-
ence time, and robustness against varying noise levels 
were performed and evaluated. 

Accuracy and Robustness Analysis

The graph measures how precision reconstruction of the 
applied CNN technique compares versus the baseline 
methods of born iterative solver and PINNs at different 
SNR values (from 10 dB to 30dB). Of the methods ana-
lyzed, the dice coefficient and SSIM values of 0.91 and 
0.93 were achieved and exceedingly surpassed all other 
methods, especially at greater noise levels (up to 20 dB 
degradation). 

•	At 30 dB, all the methods were comparable, and 
as noise level increased, only the proposed CNN 
remained stable.

•	A minor improvement was seen in case of PINNs in the 
low-noise regimes, but they did not generalize to the 
heterogeneous environment.

•	Born-based models exhibited significant declines in 
performance with greater than 15 dB SNR.

Runtime Performance and Efficiency

This bar chart gives an average inference time (per 
frame) for each model, as shown below:

Proposed CNN: 0.12 seconds per frame

•	PINNs: ~1.5 seconds
•	Born Solver: ~7.3 seconds

Based on your own results, the method proposed seems 
to enhance the responsiveness of any application, par-
ticularly within portable imaging systems. 

Reconstruction Consistency and Edge Performance

Columns labeled as “Ground Truth<,” “CNN,” “PINN,” 
and “Born” correspondingly analyze one biomedical 
phantom sample and two geophysical environment sam-
ples as well as reconstructed dielectric profiles of each 
of the three inputs.

•	With the new CNN technique, the boundaries are 
sharper and speckle-noise is much reduced. 

•	The design that contained the multiscale feature 
fusion layers displayed a higher smoothing of bound-
aries of the low-resolution inclusions than other 
architectures.

Results support the system’s high speed accuracy and 
domain generalization capabilities. System architecture 
allows real-time edge-aware reconstruction and infer-
ence with strong denoising and aggressive latency nega-
tion. The uniformity of findings across various criteria 
highlights the system’s preparedness for use in the med-
ical and geophysical imaging fields.

Fig. 8: Dice coefficient and structural similarity index 
versus noise level.
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Conclusion and Future Work

Concerning this research, it has built an end-to-end 
AI-enabled inverse modelling system which predicts EM 
fields and solves the weaknesses of the conventional 
solver and data-based models used for subsurface and 
biomedical imaging. The system described combines 
physical EM simulations with deep CNNs to achieve real-
time reconstruction of dielectric profiles from multifre-
quency EM field data. Extensive experimental validation 
of both CST and HFSS-based datasets demonstrates 
that the method outperforms benchmark approaches 
in terms of speed, precision, and noise tolerance. This 
framework connects the results from EM solvers and 
EM-enabled intelligent sensing systems. 

•	Exceptional performance in noisy and mixed conditions
•	Low latency inference for real-time diagnostics

Table 4: Quantitative comparison of methods (biomedical domain).

Method Dice Coefficient SSIM Inference Time Robustness @ 20dB SNR

Proposed CNN 0.91 0.93 0.12 s ✓

PINN 0.85 0.89 1.52 s ✗

Born Solver 0.72 0.81 7.30 s ✗

Table 5: Performance summary of the proposed framework.

Metric Value (Biomedical) Value (Subsurface) Notes

Dice Coefficient 0.91 0.88 Robust at 20 dB SNR

SSIM 0.93 0.90 Preserved texture and boundary

Inference Time (per map) 0.12 s 0.11 s Suitable for real-time deployment

•	Precise edge-conscious reconstructions by means of 
multiscale feature fusion

The whole process is captured in the image above which 
shows an E and M field simulation, data ingestion in pre-
processing, inverse modeling using deep learning, out-
put post-processing, and deployment focused on the use 
case. The image marks the points of integration with 
biomedical and geophysical use cases. 

Future Work

To build upon framework capabilities and its anticipated 
use in practice, the following steps are suggested: 

1.	 Integration of 3D Volumetric Reconstructions: 
Extending 3D volumes from 2D slices (using volumet-
ric convolutional architecture (e.g., 3D U-Nets)). 

2.	 Integration of Multiantenna and Multifrequency 
Arrays: Integration of several excitation and mea-
surement channels that enhance the depth resolu-
tion and angular coverage. 

3.	 Edge-AI Deployment: Optimizing CNN model for 
embedded environment (for instance, jetson Xavier 
or FPGA accelerated SoCs) for real-time use in for-
mats (for instance) TensorRT, ONNX. 

4.	 Clinical and Field Trials: Use of the system (e.g., 
in vivo biomedical diagnostics, early detection of 
breast tumors, and geophysical surveys in the field 
(utility detection, soil mapping)).

A sample roadmap guide illustrates starting from today’s 
2D phantom validation and ending with 3D clinical inte-
gration with in-field hardware deployment and valida-
tion. The roadmap guide indicates future benchmarks 
The more advanced and integrated this AI-equipped 
EM imaging device is, the more it can serve the dual 
purpose in both health care and civil engineering as an 
adaptable imaging instrument.

Fig. 11: Summary diagram—EM-AI inverse modeling 
system overview.
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Fig. 12: Scalability and extension roadmap.
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